[*] [+] [-] [x] [A+] [a-]  
[l] at 6/20/21 6:35pm
Amplifying feedbacks leading to accelerated planetary temperatures
by Andrew Glikson
“The paleoclimate record shouts to us that, far from being self-stabilizing, the Earth's climate
system is an ornery beast which overreacts even to small nudges” (Wally Broecker)


Many climate change models, including by the IPCC, appear to minimize or even neglect the amplifying feedbacks of global warming, which are pushing temperatures upward in a runaway chain reaction-like process, as projected by Wally Broecker and other:

These feedbacks drive a chain reaction of events, accelerating the warming, as follows:

  1. Melting snow and ice expose dark rock surfaces, reducing the albedo of the polar terrains and sea ice in surrounding oceans, enhancing infrared absorption and heating.
  2. Fires create charred low-albedo land surfaces.
  3. An increase in evaporation raises atmospheric vapor levels, enhancing the greenhouse gas effect.
  4. Whereas an increase in plant leaf area enhances photosynthesis and evapotranspiration, creating a cooling effect, the reduction in vegetation in darkened burnt areas works in the opposite direction, warming land surfaces.
Figure 1. The 2021 global climate trends (Hansen, 2021, by permission)
The current acceleration of global warming is reflected by the anomalous rise of temperatures, in particular during 2010-2020 (Hansen 2021, Figure 1 above). Consequently, extensive regions are burning, with 4 to 5 million fires per year counted between about 2004 and 2019. In 2021, global April temperatures are much less than in 2020, due to a moderately strong La Nina effects.
Figure 2. The Palaeocene-Eocene Thermal Maximum recorded by benthic plankton isotopic data from sites in the Antarctic, south Atlantic and Pacific (Zachos et al., 2003). The rapid decrease in oxygen isotope ratios is indicative of a large increase in atmospheric temperatures associated with a rise in greenhouse gases CO₂ and CH₄ signifies approximately +5°C warming.
A runaway climate chain reaction-like process triggered by release of methane is believed to have occurred during the Paleocene-Eocene thermal maximum (PETM), about 55 million years ago (Figures 2 above and 3A below).
Analogies between Anthropocene climate change and major geological climate events reveal the rate of current rise in greenhouse gas levels and temperatures as compared to major geological warming events is alarming. A commonly cited global warming event is the Paleocene-Eocene boundary thermal maximum (PETM) at 55 Ma-ago, reaching +5 degrees Celsius and over 800 ppm CO₂ within a few thousand years (Figures 2 above and 3A below).
Figure 3. (A) Simulated atmospheric CO₂ at and following the Palaeocene-Eocene boundary (after Zeebe et al., 2009);
(B) Global CO₂ and temperature during the last glacial termination (After Shakun et al., 2012) (LGM - Last Glacial Maximum; OD – Older dryas; BA - Bølling–Alerød; YD - Younger dryas). Glikson (2020).

The definitive measure of Anthropocene global warming, i.e. the rise in the atmospheric concentration of CO₂, to date by 49 percent since pre-industrial time (from 280 ppm to currently 419 ppm), is only rarely mentioned by the media or politicians. Nor are the levels of methane and nitrous oxide, which have risen by about 3-fold. To date potential attempts toward climate mitigation and adaptation have failed. There is a heavy price in communicating distressing projections, Cassandra-like, where climate scientists have been threatened, penalized or dismissed, including from major institutions
The triggering of a mass extinction event by the activity of organisms is not unique to the Anthropocene. The end Permian mass extinction, the greatest calamity for life in geologic history, is marked in marine carbonates by a negative δ¹³C shift attributed to oceanic anoxia and the emission of methane (CH₄) and hydrogen sulphide (H₂S) related to the activity of methanogenic algae (“purple” and “green” bacteria) (Ward, 2006; Kump, 2011). As a corollary anthropogenic climate change constitutes a geological/biological process where the originating species (Homo sapiens) has not to date discovered an effective method of controlling the calamitous processes it has triggered.

Andrew Glikson A/Prof. Andrew Glikson

Earth and Paleo-climate scientist
The University of New South Wales,
Kensington NSW 2052 Australia


Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332


Links image top
• Seasonal origin of the thermal maxima at the Holocene and the last interglacial - by Samantha Bova et al. (2021)
https://www.nature.com/articles/s41586-020-03155-x

• Could temperatures keep rising? - by Sam Carana (2021) https://arctic-news.blogspot.com/2021/06/could-temperatures-keep-rising.html
• Blueprints of future climate trends - by Andrew Glikson (2018)
https://arctic-news.blogspot.com/2019/09/blueprints-of-future-climate-trends.html

• Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation - by Jeremy Shakun (2012)
https://www.nature.com/articles/nature10915
• The Last Great Global Warming - by Lee Kump (2011)
https://www.scientificamerican.com/article/the-last-great-global-warming

[Author: Sam Carana] [Category: Andrew Glikson, Anthropocene, chain reaction-like process, PETM, runaway]

[*] [+] [-] [x] [A+] [a-]  
[l] at 6/13/21 4:20am
Orbital changes are responsible for Milankovitch cycles that make Earth move in and out of periods of glaciation, or Ice Ages. Summer insolation on the Northern Hemisphere reached a peak some 10,500 years ago, in line with the Milankovitch cycles, and insolation has since gradually decreased.
Summer insolation on the Northern Hemisphere in red and in langleys
per day (left axis, adapted from Walker, 2008). One langley is 1 cal/cm²
(thermochemical calorie per square centimeter), or 41840 J/m² (joules
per square meter), or about 11.622 Wh/m² (watt-hours per square meter).
In blue is the mean annual sea surface temperature, given as the difference
from the temperature over the last 1000 years (right axis, from Bova, 2021).
Snow and ice cover acting as a buffer

While temperatures rose rapidly, especially before the insolation peak was reached, the speed at which temperatures rose was moderated by the snow and ice cover, in a number of ways:
  • snow and ice cause sunlight to get reflected back into space
  • energy from sunlight is consumed in the process of melting snow and ice, and thawing permafrost
  • meltwater from sea ice and runoff from melting glaciers and thawing permafrost cools oceans.
In other words, the snow and ice cover acted as a buffer, moderating the temperature rise. While this buffer has declined over time, it is still exercizing this moderation today, be it that the speed at which this buffer is reducing in size is accelerating, as illustrated by the image below, showing the rise of the sea surface temperature on the Northern Hemisphere. 
[ from earlier post ]
Will the snow and ice cover ever grow back?
More recently, the temperature rise has been fueled by emissions caused by people. While emission of greenhouse gases did rise strongly since the start of the Industrial Revolution, the rise in emission of greenhouse gases by people had already started some 7,000 years ago with the rise in modern agriculture and associated deforestation, as illustrated by the image below, based on Ruddiman et al. (2015).

The temperature has risen accordingly since those times. As the image at the top shows, temperatures appear to have risen by 0.3°C, compared to some 6000 years before the Industrial Revolution started. When also taking into account that the temperature would have fallen naturally (i.e. in the absence of these emissions), the early temperature rise caused by people may well be twice as much. 
Temperatures could keep rising for many years, for a number of reasons:
  • Snow & Ice Cover Loss - A 2016 analysis by Ganapolski et al. suggests that even moderate anthropogenic cumulative carbon dioxide emissions would cause an absence of the snow and ice cover in the next Milankovitch cycle, so there would be no buffer at the next peak in insolation, and temperatures would contine to rise, making the absence of snow and ice a permanent loss.
  • Brighter Sun - The sun is now much brighter than it was in the past and keeps getting brighter.
  • Methane - Due to the rapid temperature rise, there is also little or no time for methane to get decomposed. Methane levels will skyrocket, due to fires, due to decomposition of dying vegetation and due to releases from thawing of terrestrial permafrost and from the seafloor as hydrates destabilize.
  • No sequestration - The rapidity of the rise in greenhouse gases and of the associated temperature rise leaves species little or no time to adapt or move, and leaving no time for sequestration of carbon dioxide by plants and by deposits from other species, nor for formation of methane hydrates at the seafloor of oceans.
  • No weathering - The rapidity of the rise also means that weathering doesn't have a chance to make a difference. Rapid heating is dwarfing what weathering can do to reduce carbon dioxide levels. 
  • Oceans and Ozone Layer Loss - With a 3°C rise, many species including humans will likely go extinct. A 2013 post warned that, with a 4°C rise, Earth will enter a moist-greenhouse scenario. A 2018 study by Strona & Bradshaw indicates that most life on Earth would disappear with a 5°C rise. As temperatures kept rising, the ozone layer would disappear and the oceans would keep evaporating and eventually disappear into space, further removing elements and conditions that are essential to sustain life on Earth.

Paris Agreement

All this has implications for the interpretation of the Paris Agreement. At the Paris Agreement, politicians pledged to take efforts to ensure that the temperature will not exceed 1.5°C above pre-industrial levels.

So, what are pre-industrial levels? The 'pre-' in pre-industrial means 'before', suggesting that 'pre-industrial' refers to levels as they were in times befóre (as opposed to when) the Industrial Revolution started. Carbon dioxide and methane levels actually started to rise markedly about 6000 years ago, as illustrated by above image, based on Ruddiman (2015). 
A huge temperature rise by 2026?

A recent post suggests that the 1.5°C threshold was already crossed in 2012, i.e. well before the Paris Agreement was adopted by the U.N. (in 2015), while there could be a temperature rise of more than 3°C by 2026. 
Such a rise could be facilitated by a number of events and developments, including:
[ from earlier post ] • The Arctic sea ice latent heat tipping point and the seafloor methane hydrates tipping point look set to get crossed soon (see above image).
• Continued emissions. Politicians are still refusing to take effective action, even as greenhouse gas emissions appear to be accelerating. The warming impact of carbon dioxide reaches its peak a decade after emission, while methane's impact over a few years is huge.
• Sunspots. We're currently at a low point in the sunspot cycle. As the image on the right shows, the number of sunspots can be expected to rise as we head toward 2026, and temperatures can be expected to rise accordingly. According to James Hansen et al., the variation of solar irradiance from solar minimum to solar maximum is of the order of 0.25 W/m⁻².
• Temperatures are currently also suppressed by sulfate cooling, and their impact is falling away as we progress with the necessary transition away from fossil fuel and biofuel, toward the use of more wind turbines and solar panels instead. Aerosols typically fall out of the atmosphere within a few weeks, so as the transition progresses, this will cause temperatures to rise over the next few years.
• El Niño events, according to NASA, occur roughly every two to seven years. As temperatures keep rising, ever more frequent strong El Niño events are likely to occur. NOAA anticipates the current La Niña to continue for a while, so it's likely that a strong El Niño will occur between 2023 and 2025.
• Rising temperatures can cause growth in sources of greenhouse gases and a decrease in sinks, as discussed in an earlier post.
The mass extinction event that we are currently in is rapidly progressing, even faster than the Great Permo-Triassic Extinction, some 250 million years ago, when the temperature rose to about 28°C, i.e. some 14.5°C higher than pre-industrial.
In the video below, Guy McPherson discusses the current mass extinction.


In conclusion, there could be a huge temperature rise by 2026 and with a 3°C rise, humans will likely go extinct, which is a daunting prospect. Even so, the right thing to do is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan.


Links
• Climate change and ecosystem response in the northern Columbia River basin - A paleoenvironmental perspective - by Ian R. Walker and Marlow G. Pellat (2008)
https://cdnsciencepub.com/doi/10.1139/A08-004
• Vance, R.E. 1987. "Meteorological Records of Historic Droughts as Climatic Analogues for the Holocene." In N.A. McKinnon and G.S.L. Stuart (eds), Man and the Mid-Holocene Climatic Optimum - Proceedings of the Seventeenth Annual Conference of the Archaeological Association of the University of Calgary. The University of Calgary Archaeological Association, Calgary: 17-32.
• Seasonal origin of the thermal maxima at the Holocene and the last interglacial - by Samantha Bova et al. (2021)
https://www.nature.com/articles/s41586-020-03155-x

• Palaeoclimate puzzle explained by seasonal variation (2021)
https://www.nature.com/articles/d41586-021-00115-x

• Important Climate Change Mystery Solved by Scientists (news release 2021)
https://www.rutgers.edu/news/important-climate-change-mystery-solved-scientists

• Milankovitch (Orbital) Cycles and Their Role in Earth's Climate - by Alan Buis (NASA news, 2020)
https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-climate

• Milankovitch cycles - Wikipedia
https://en.wikipedia.org/wiki/Milankovitch_cycles

• Insolation changes
https://energyeducation.ca/encyclopedia/Insolation
http://www.geo.umass.edu/faculty/bradley/bradley2003x.pdf

• Late Holocene climate: Natural or anthropogenic? - by William Ruddiman et al. (2015)
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015RG000503

• Critical insolation–CO2 relation for diagnosing past and future glacial inception - by Andrey Ganapolski et al. (2016)
https://www.nature.com/articles/nature16494
• Co-extinctions annihilate planetary life during extreme environmental change - by Giovanni Strona & Corey Bradshaw (2018) https://www.nature.com/articles/s41598-018-35068-1
• Earth is on the edge of runaway warming https://arctic-news.blogspot.com/2013/04/earth-is-on-the-edge-of-runaway-warming.html

• Paris Agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/sites/default/files/english_paris_agreement.pdf

• IPCC AR5 Synthesis Report — Figure 2.8
https://www.ipcc.ch/report/ar5/syr/synthesis-report

• IPCC AR5 Report, Summary For Policymakers
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_SPM_FINAL.pdf
• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing - by M. Etminan et al.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071930

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Possible climate transitions from breakup of stratocumulus decks under greenhouse warming - by Tapio Schneider et al.
https://www.nature.com/articles/s41561-019-0310-1

• A World Without Clouds
https://www.quantamagazine.org/cloud-loss-could-add-8-degrees-to-global-warming-20190225

• How close are we to the temperature tipping point of the terrestrial biosphere? - by Katharyn Duffy et al. https://advances.sciencemag.org/content/7/3/eaay1052
• What Carbon Budget? https://arctic-news.blogspot.com/2021/01/what-carbon-budget.html

• 2020: Hottest Year On Record
https://arctic-news.blogspot.com/2021/01/2020-hottest-year-on-record.html

• Overshoot or Omnicide? https://arctic-news.blogspot.com/2021/03/overshoot-or-omnicide.html

• Confirm Methane's Importance
https://arctic-news.blogspot.com/2021/03/confirm-methanes-importance.html

• Arctic Ocean invaded by hot, salty water https://arctic-news.blogspot.com/2021/05/arctic-ocean-invaded-by-hot-salty-water.html

• Greenhouse gas levels keep rising at accelerating rates
https://arctic-news.blogspot.com/2021/06/greenhouse-gas-levels-keep-rising-at-accelerating-rates.html
• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

[Author: Sam Carana] [Category: Earth, Guy McPherson, interglacials, paleoclimate, rise, Samantha Bova, temperature, William Ruddiman]

[*] [+] [-] [x] [A+] [a-]  
[l] at 6/3/21 1:32am

At the Paris Agreement in 2015, politicians pledged to limit the global temperature rise from pre-industrial levels to 1.5°C and promised to stop rises in greenhouse gas emissions as soon as possible and to make rapid reductions in accordance with best available science, to achieve a balance between people's emissions by sources and removals by sinks of greenhouse gases in the second half of this century. 

Yet, greenhouse gas levels keep rising and the rise appears to be accelerating. 

Carbon Dioxide

Annual growth rates of carbon dioxide (CO₂) have been rising for decades.

The February 2021 global CO₂ level was 415.88 parts per million (ppm), which was 2.96 ppm higher than the February 2020 global CO₂ level. On April 8, 2021, CO₂ levels at Mauna Loa, Hawaii, reached a peak of 421.36 ppm.
Methane
  The 2020 global annual methane growth rate of 15.85 ppb was the highest on record. The global methane level in January 2021 was 1893.4 ppb, 20 ppb higher than the January 2020 level. 
The image at the top shows a trend indicating that methane could reach a level of 4000 ppb in 2026, which at a 1-year GWP of 200 translates into 800 ppm CO₂e, so just adding this to the current CO₂ level would cause the Clouds Tipping Point at 1200 CO₂e to be crossed, which in itself could raise global temperatures by 8°C, as described in an earlier post
Nitrous Oxide

The 2020 global annual nitrous oxide (N₂O) growth rate of 1.33 ppb was the highest on record. The global N₂O level in January 2021 was 333.9 ppb, 1.4 ppb higher than the January 2020 level. 

Greenhouse gas levels are accelerating, despite promises by politicians to make dramatic cuts in emissions. As it turns out, politicians have not taken the action they promised they would take. 
Of course, when also adding nitrous oxide, the Clouds Tipping Point can get crossed even earlier.

Elements contributing to temperature rise

Next to rising greenhouse gas levels, there are further elements that can contribute to a huge temperature rise soon.  As illustrated by above image by Nico Sun, the accumulation of energy going into melting the sea ice is at record high for the time of year. 


As illustrated by above combination image, the thickness of the sea ice is now substantially less than it used to be. The image compares June 1, 2021 (left), with June 1, 2015 (right). 

The animation on the right shows that sea ice is getting rapidly thinner, indicating that the buffer constituted by the sea ice underneath the surface is almost gone, meaning that further heat entering the Arctic Ocean will strongly heat up the water.
As described in an earlier post, this can destabilizate methane hydrates in sediments at the seafloor of the Arctic Ocean, resulting in eruption of methane from these hydrates and from methane that is located in the form of free gas underneath such hydrates. 
Such methane eruptions will first of all heat up the Arctic, resulting in loss of Arctic sea ice's ability to reflect sunlight back into space (albedo feedback), in disappearing glaciers and in rapidly thawing terrestrial permafrost (and the associated release of greenhouse gases).

This comes with further feedbacks such as changes to the Jet Stream that result in ever more extreme weather including storms and forest fires.

Temperatures can also be expected to rise over the next few years as sulfate cooling decreases. Aerosols can further cause additional warming if more black carbon and brown carbon gets emitted due to more wood getting burned and more forest fires taking place.

Therefore, the 8°C rise as a result of crossing the Clouds Tipping Point would come on top of the warming due to other elements, and the total rise could be as high as 18°C or 32.4°F from preindustrial, as ilustrated by the image on the right, from an earlier post.

In conclusion, there could be a huge temperature rise by 2026.

At a 3°C rise, humans will likely go extinct, making it from some perspectives futile to speculate about what will happen beyond 2026.

Even so, the right thing to do is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan.

Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Paris Agreement
https://unfccc.int/sites/default/files/english_paris_agreement.pdf
• NOAA: Trends in Greenhouse gases
https://gml.noaa.gov/ccgg/trends
• Overshoot or Omnicide? https://arctic-news.blogspot.com/2021/03/overshoot-or-omnicide.html
• Cryosphere Computing - by Nico Sun
https://cryospherecomputing.tk
• Arctic Ocean invaded by hot, salty water https://arctic-news.blogspot.com/2021/05/arctic-ocean-invaded-by-hot-salty-water.html

• Naval Research Laboratry - sea ice thickness https://www7320.nrlssc.navy.mil/GLBhycomcice1-12/arctic.html
• Feedbacks in the Arctic  https://arctic-news.blogspot.com/p/feedbacks.html
• A rise of 18°C or 32.4°F by 2026? https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html
• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html



[Author: Sam Carana] [Category: Arctic, clouds, greenhouse gases, ocean, rise, sea ice, temperature, thickness]

[*] [+] [-] [x] [A+] [a-]  
[l] at 5/30/21 2:16am
by Andrew Glikson 
“The smart way to keep people passive and obedient is to strictly limit the spectrum of acceptable opinion, but allow very lively debate within that spectrum.” Noam Chomsky (1998).

The level of atmospheric methane, a poisonous gas considered responsible for major mass extinction events in the past, has nearly tripled during the 20-21st centuries, from ~722 ppb (parts per billion) to above ~1866 ppb, currently reinforced by coal seam gas (CSG) emissions. As the concentration of atmospheric methane from thawing Arctic permafrost, from Arctic sediments and from marshlands worldwide is rising, the hydrocarbon industry, subsidized by governments, is progressively enhancing global warming by extracting coal seam gas in defiance of every international agreement.

Methane (CH₄), a powerful greenhouse gas ~80 times the radiative power of carbon dioxide (CO₂) when fresh, sourced in from anaerobic decomposition in wetlands, rice fields, emission from animals, fermentation, animal waste, biomass burning, charcoal combustion and anaerobic decomposition of organic waste, is enriched by melting of leaking permafrost, leaks from sediments of the continental shelf (Figure 1) and extraction as coal seam gas (CSG). The addition to the atmosphere of even a part of the estimated 1,400 billion tons of carbon (GtC) from Arctic permafrost would destine the Earth to temperatures higher than 4 degrees Celsius and thereby demise of the biosphere life support systems.

During the last and present centuries, global methane concentrations have risen from approximately ~700 parts per billion (ppb) to near-1900 ppb, an increase by a factor of ~2.7, the highest rate in the last 800,000 years.

Since the onset of the Industrial age global emissions of carbon have reached near-600 billion tonnes of carbon (>2100 billion tonnes CO₂) at a rate faster than during the demise of dinosaurs. According to research published in Nature Geoscience, CO₂ is being added to the atmosphere at least ten times faster than during a major warming event about 55 million years ago.

Australia, possessing an abundance of natural gas, namely methane resources, is on track to become the world's largest exporter. Leaks from hydraulic fracturing (fracking) production wells, transport and residues of combustion are bound to contribute significantly to atmospheric methane. However, despite economic objections, not to mention accelerating global warming, natural gas from coal seam gas, liquefied to -161°C, is favored by the government for domestic use as well as exported around the world.

In the Hunter Valley, NSW, release of methane from open-cut coal mining reached above 3000 ppb. In the US methane released in some coal seam gas fields constitutes between 2 and 17 per cent of the emissions.

While natural gas typically emits between 50 and 60 percent less CO₂ than coal when burned, the drilling and extraction of natural gas from wells, fugitive emissions, leaks from transportation in pipelines result in enrichment of the atmosphere in methane, the main component of natural gas, 34 times stronger than CO₂ at trapping heat over a 100-year period and 86 times stronger over 20 years. So, while natural gas when burned emits less CO₂ than coal, that doesn’t mean that it’s clean – the reason summed up in one word: methane.

Global warming triggered by the massive release of CO₂ may be catastrophic, but release of CH₄ from methane hydrates may be apocalyptic. According to Brand et al. (2016), the release of methane from permafrost and shelf sediment has constituted the ultimate source and cause for the dramatic life-changing global warming. The mass extinction at the end of the Permian 251 million years ago, when 96 percent of species was lost, holds an important lesson for humanity regarding greenhouse gas emissions, global warming, and the life support system of the planet (Brand et al. 2016, Methane Hydrate: Killer cause of Earth's greatest mass extinction).

The pledge for zero emissions by 2050 is questioned as governments continue to subsidize, mine and export hydrocarbons. Examples include Saudi-Arabia, the Gulf States, Russia, Norway and Australia. A mostly compliant media highlights a zero emission pledge but is reluctant to report the scale of exported emissions as well as the ultimate consequences of the open-ended rise of global temperatures.

Norway, a country committed to domestic clean energy, is conducting large scale drilling for Atlantic and Arctic oil. Australia, the fourth-largest producer of coal, with 6.9% of global production, is the biggest net exporter, with 32% of global exports in 2016. 23 new coal projects are proposed n the Hunter Valley, NSW, with a production capacity equivalent to 15 Adani-sized mines.

Australian electricity generation is dominated by fossil fuel and about 17% renewable energy. Fossil fuel subsidies hit $10.3 billion in 2020-21, about twice the investment in solar energy in 2019-2020. State Governments spent $1.2 billion subsidizing exploration, refurbishing coal ports, railways and power stations and funding “clean coal” research, ignoring the pledge for “zero emissions by 2050”.

The pledge overlooks the global amplifying effects of cumulative greenhouse gases. At the current rate of emissions, atmospheric CO₂ levels would be near 500 ppm CO₂ by 2050, generating warming of the oceans (expelling CO₂), decreased albedo due to melting of ice, release of methane, desiccated vegetation and extensive fires.

Claims of “clean coal”, “clean gas” and “clean hydrogen” ignore the contribution of these methods to the rise in greenhouse gases. Coal seam gas has become an additional source of methane which has an 80 times more powerful greenhouse effect than CO₂. This adds to the methane leaked from Arctic permafrost, with atmospheric methane rising from ~ 600 parts per billion early last century to higher than 2000 ppb. In the Hunter Valley, NSW, release of methane from open-cut coal mining reached above 3000 ppb. In the US, methane released in some coal seam gas fields constitutes between 2 and 17 per cent of the emissions.

The critical index of global warming, rarely mentioned by politicians or the media, is the atmospheric concentration of CO₂. During 2020-2021 CO₂ rose from 416.45 to 419.05 parts per million at a rate of 2.6 ppm/year, a trend unprecedented in the geological record of the last 55 million years. The combined effects of greenhouse gases such as cabon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) have reached near ~500 ppm CO2-equivalent.
Since 1880, the world has warmed by 1.09 degrees Celsius on average, near ~1.5°C on the continents and ~2.2°C in the Arctic, with the five warmest years on record during 2015-2020. Since the 1980s, the wildfire season has lengthened across a quarter of the world's vegetated surface. As extensive parts of Earth are burning, “forever wars” keep looming. 
It is not clear how tracking toward +4 degrees Celsius by the end of the century can be arrested. A level of +4°C above pre-industrial temperature endangers the very life support systems of the planet. The geological record indicates past global heating events on a scale and rate analogous to the present have led to mass extinctions of species. According to Professor Will Steffen, Australia’s top climate scientist “we are already deep into the trajectory towards collapse”. While many scientists are discouraged by the extreme rate of global heating, it is left to a heroic young girl to warn the world of the greatest calamity since a large asteroid impacted Earth some 66 million years ago.


Andrew Glikson A/Prof. Andrew Glikson

Earth and Paleo-climate scientist
The University of New South Wales,
Kensington NSW 2052 Australia


Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332



[Author: Sam Carana] [Category: Andrew Glikson, extinction, gas, greenhouse, hydrates, methane]

[*] [+] [-] [x] [A+] [a-]  
[l] at 5/23/21 12:20am

Sea surface temperatures on the Northern Hemisphere have been rising dramatically over the years, as illustrated by above image, indicating that the latent heat tipping point is getting crossed, while the methane hydrates tipping point could get crossed soon, depending on developments.
At the moment, the surface temperature of most of the Arctic ocean's is still below 0°C.

Heat is entering the Arctic Ocean from the south, as illustrated by the image on the right. Hot, salty water is entering the Arctic Ocean from the Atlantic Ocean and it dives underneath the ice, causing the ice to melt from below. 
Sea ice that hasn't yet survived a summer melt season is referred to as first-year ice. This thin, new ice is vulnerable to melt and disintegration in stormy conditions. Ice that survives a summer melt season can grow thicker and less salty, since snow that thickens the ice contains little salt. Thickness and salt content determine the resistance of the ice to melt. Multiyear ice is more likely to survive temperatures that would melt first-year ice, and to survive waves and winds that would break up first-year ice.
The image on the right shows a forecast of the thickness of the sea ice, run on May 20, 2021 and valid for May 21, 2021.  An area is visible north of Severnaya Zemlya toward the North Pole where thickness is getting very thin, while there is one spot where the ice has virtually disappeared. 
The spot is likely a melting iceberg, the animation on the right shows that the spot has been there for quite a few days, while the freshwater in this spot appears to result from the melting amidst the salty water. 
Overall, sea ice is getting very thin, indicating that the buffer constituted by the sea ice underneath the surface is almost gone, meaning that further heat entering the Arctic Ocean will strongly heat up the water. 
As the animation underneath on the right shows, freshwater is entering the Arctic Ocean due to runoff from land, i.e. rainwater from rivers, meltwater from glaciers and groundwater runoff from thawing ermafrost. 
At the same time, very salty water is entering the Arctic Ocean from the Atlantic Ocean. 
The map below shows how salty and hot water from the Atlantic Ocean enters the Arctic Ocean along two currents, flowing on each side of Svalbard, and meeting at this area north of Severnaya Zemlya where thickness is getting very low. 
The blue color on the map indicates depth (see scale underneath). 

The image below, by Malcolm Light and based on Max & Lowrie (1993), from a recent post, shows vulnerable Arctic Ocean slope and deep water methane hydrates zones below 300 m depth. 

Malcolm Light indicates three areas:  Area 1. Methane hydrates on the slope; Area 2. Methane hydrates on the abyssal plane; and Area 3. Methane hydrates associated with the spreading Gakkel Ridge hydro-thermal activity (the Gakkel Riidge runs in between the northern tip of Greenland and the Laptev Sea). 

The freezing point of freshwater is 0°C or 32°F. For salty water, the freezing point is -2°C or 28.4°F.

During April 2021, sea ice was about 160 cm thick.

In June and July 2021, thickness will fall rapidly, as illustrated by the image on the right by Nico Sun. 
Sea ice acts as a buffer, by consuming energy in the process of melting, thus avoiding that this energy causes a temperature rise of the water. 
As long as there is sea ice in the water, this sea ice will keep absorbing heat as it melts, so the temperature will not rise at the sea surface and remain at zero°C.

The amount of energy that is consumed in the process of melting the ice is as much as it takes to heat an equivalent mass of water from zero°C to 80°C.
The accumulated ice melt energy until now is the highest on record, as illustrated by the image on the right, by Nico Sun.

The image below further illustrate the danger. As the temperature of the water keeps rising, more heat will reach sediments at the seafloor of the Arctic Ocean that contain vast amounts of methane, as discussed at this page and in this post.

Ominously, methane levels reached a peak of 2901 ppb at 469 mb on May 13, 2021. 

In the video below, Peter Wadhams analyses Arctic methane.


The video below is an interview with Igor Semiletov by Nick Breeze discussing methane plumes detected during 2020 field research over the East Siberian Arctic Shelf (ESAS).

In the video below, Guy McPherson discusses the situation.

In conclusion, temperatures could rise dramatically soon. A 3°C will likely suffice for humans to go extinct, making it in many respects rather futile to speculate about what will happen in the longer term. On the other hand, the right thing to do is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan.

Links

• NOAA Climate at a Glance https://www.ncdc.noaa.gov/cag/global/time-series/nhem/ocean/ann/4/1997-2020
• Danish Meteorological Institute - Arctic temperature
http://ocean.dmi.dk/arctic/meant80n.uk.php
• Freezing point of water - Climate Change: Arctic sea ice https://www.climate.gov/news-features/understanding-climate/climate-change-minimum-arctic-sea-ice-extent
• Arctic surface temperature http://ocean.dmi.dk/anim/index.uk.php
• Arctic sea ice - thickness and salinity - navy.mil
https://www7320.nrlssc.navy.mil/GLBhycomcice1-12/arctic.html
• CryosphereComputing - by Nico Sun
https://cryospherecomputing.tk
• A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4 - by Qiang Wang et al.  https://gmd.copernicus.org/articles/11/1229/2018/
• Max, M.D. & Lowrie, A. 1993. Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. Arctic Geology and Petroleum Potential, Proceedings of the Norwegian Petroleum Society Conference, 15-17 August 1990, Tromso, Norway. Norwegian Petroleum Society (NPF), Special Publication 2 Elsevier, Amsterdam, 27-53. https://www.elsevier.com/books/arctic-geology-and-petroleum-potential/vorren/978-0-444-88943-0

• Extinction by 2027- by Malcolm Light https://arctic-news.blogspot.com/2021/05/extinction-by-2027.html

• MetOp satellite - methane
https://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi
• The Threat
https://arctic-news.blogspot.com/p/threat.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

[Author: Sam Carana] [Category: Arctic, currents, Guy McPherson, hydrates, Malcolm Light, methane, ocean, Peter Wadhams, rise, temperature, tipping point]

[*] [+] [-] [x] [A+] [a-]  
[l] at 5/18/21 6:06am
by Malcolm Light
The greatest threat to humanity on Earth is the escalating Arctic atmospheric methane buildup, caused by the destabilization of subsea methane hydrates. This subsea Arctic methane hydrate destabilization will go out of control in 2024 and lead to a catastrophic heatwave by 2026.

While the source region for this subsea methane is in Russian waters, the hot ocean current setting them off is the northern extension of the Gulf Stream - North Atlantic Drift, the “Svalbard Current”, which makes United States and Canadian atmospheric pollution guilty of this looming catastrophic Global Extinction event.


References

Extinction by 2027 - Post by Malcolm Light and comments 
https://www.facebook.com/malcolm.light.50/posts/4013328748745929
Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - by Shakhova, Semiletov, Salyuk and Kosmach (2008) 
http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf
Max, M.D. & Lowrie, A. 1993. Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. Arctic Geology and Petroleum Potential, Proceedings of the Norwegian Petroleum Society Conference, 15-17 August 1990, Tromso, Norway. Norwegian Petroleum Society (NPF), Special Publication 2 Elsevier, Amsterdam, 27-53. 
https://www.elsevier.com/books/arctic-geology-and-petroleum-potential/vorren/978-0-444-88943-0
Lucy-Alamo Projects - Hydroxyl Generation and Atmospheric Methane Destruction  http://arctic-news.blogspot.com/2015/10/lucy-alamo-projects-hydroxyl-generation-and-atmospheric-methane-destruction.html

[Author: Sam Carana] [Category: Arctic, extinction, hydrates, Malcolm Light, metane, near term human extinction]

[*] [+] [-] [x] [A+] [a-]  
[l] at 3/18/21 11:53pm

Questions and Anwers with Sam Carana

Above image shows a non-linear trend based on 1880-2020 NASA Land+Ocean data that are adjusted 0.78°C to reflect a pre-industrial base, to more fully reflect strong polar warming, and to reflect surface air temperatures over oceans.

The trend highlights that the 1.5°C threshold was crossed in 2012 (inset), while the 2°C threshold looks set to be crossed next year and a 2°C rise could be reached at the end of  2026.

Overshoot?

The blue trend in the image at the top shows the temperature rise crossing 1.5°C in 2012. Could this be a temporary overshoot? Could temperatures come down in future, to such extent that this will bring the average temperature rise back to below 1.5°C?
An associated question is how much temperatures will rise when averaged over a 30-year period that is centered around the start of 2012? In other words, what is the average temperature rise from 1997 to end 2026? 
The answer is that, for the 1997-2026 average to be below 1.5°C, temperatures would have to fall over the next few years. Even if the temperature for 2021 fell to a level as low as it was in 2018 and remained at that same lower level until end 2026, the 1997-2026 average would still be more than 1.5°C above pre-industrial. 

Will temperatures rise over the next few years? Why? By how much?

Even if al emissions of greenhouse gases by people could magically end from one moment to another, temperatures would still continue to rise over the next few years. Reasons for this rise are listed below, and it is not an exhaustive list. By implication, there is no carbon budget left. Pretending that there was a carbon budget left, to be divided among polluters and to be consumed over the next few years, that suggestion is irresponsible. 
• The warming impact of carbon dioxide reaches its peak a decade after emission, while methane's impact over ten years is huge, so the warming impact of the greenhouse gases already in the atmosphere is likely to prevent temperatures from falling and could instead keep raising temperatures for some time to come. 

• Temperatures are currently suppressed. We're in a La Niña period, as illustrated by the image below. 

• We're also at a low point in the sunspot cycle. As the image on the right shows, the number of sunspots can be expected to rise as we head toward 2026, and temperatures can be expected to rise accordingly. 

• Add to this the impact of a recent Sudden Stratospheric Warming event. We are currently experiencing the combined impact of three short-term variables that are suppressing the temperature rise, i.e. a Sudden Stratospheric Warming event, a La Niña event and a low in sunspots. 
Over the next few years, in the absence of Sudden Atmopsheric Warming events, a huge amount of heat could remain present at surface level. As the temperature impact of other short-term variables reverses, i.e. as the sunspot cycle moves toward a peak and a El Niño develops, this could push up temperatures substantially. The world could be set up for a perfect storm by 2026, since sunspots are expected to reach a peak by then and since it takes a few years to move from a La Niña low to the peak of an El Niño period. 
• Furthermore, temperatures are currently also suppressed by sulfate cooling. This impact is falling away as we progress with the necessary transition away from fossil fuel and biofuel, toward the use of more wind turbines and solar panels instead. Aerosols typically fall out of the atmosphere within a few weeks, so as the transition progresses, this will cause temperatures to rise over the next few years. 

• Also holding back the temperature rise at the moment is the buffer effect of thick sea ice in the Arctic that consumes heat as it melts. As Arctic sea ice thickness declines, more heat will instead warm up the Arctic, resulting in albedo changes, changes to the Jet Stream and possibly trigger huge releases of methane from the seafloor. The rise in ocean temperature on the Northern Hemisphere looks very threatening in this regard (see image on the right) and many of these developments are discussed at the extinction page. There are numerous feedbacks that look set to start kicking in with growing ferocity as temperatures keep rising, such as releases of greenhouse gases resulting from permafrost thawing and the decline of the snow and ice cover. Some 30 feedbacks affecting the Arctic are discussed at the feedbacks page
• The concusion of study after study is that the situation is worse than expected and will get even worse as warming coninues. Some examples: a recent study found that the Amazon rainforest is no longer a sink, but has become a source, contributing to warming the planet instead; another study found that soil bacteria release carbon dioxide previously thought to remain trapped by iron; and yet another study found that kelp off the Californian coast has collapsed. 

Where do we go from here?

[ image from earlier post ]

The same blue trend that's in the image at the top also shows up in the image on the right, from an earlier post, together with a purple trend and a red trend that picture even worse scenarios than the blue trend.   

The purple trend is based on 15 recent years (2006-2020), so it can cover a 30-year period (2006-2035) that is centered around end December 2020. As the image shows, the purple trend points at a rise of 10°C by 2026, leaving little or no scope for the current acceleration to slow, let alone for the anomaly to return to below 2°C.

The red trend is based on a dozen recent years (2009-2020) and shows that the 2°C threshold could already have been crossed in 2020, while pointing at a rise of 18°C by 2025. 

In conclusion, temperatures could rise by more than 3°C by the end of 2026, as indicated by the blue trend in the image at the top. At that point, humans will likely go extinct, making it in many respects rather futile to speculate about what will happen beyond 2026. On the other hand, the right thing to do is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan

Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html
• NOAA Northern Hemisphere Ocean Temperature Anomaly https://www.ncdc.noaa.gov/cag/global/time-series/nhem/ocean/12/12/1880-2021
• NOAA Sunspots - solar cycle progression https://www.swpc.noaa.gov/products/solar-cycle-progression
• 2020: Hottest Year On Record https://arctic-news.blogspot.com/2021/01/2020-hottest-year-on-record.html
• What Carbon Budget? https://arctic-news.blogspot.com/2021/01/what-carbon-budget.html
• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html
• High Temperatures October 2020
https://arctic-news.blogspot.com/2020/10/high-temperatures-october-2020.html

• Temperature keep rising https://arctic-news.blogspot.com/2020/12/temperatures-keep-rising.html
• More Extreme Weather
https://arctic-news.blogspot.com/2021/02/more-extreme-weather.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html
• Sudden Stratospheric Warming  https://arctic-news.blogspot.com/p/sudden-stratospheric-warming.html
• Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw - by Monique Patzner et al.  https://www.nature.com/articles/s41467-020-20102-6
• Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave - by Meredith McPherson et al. https://www.nature.com/articles/s42003-021-01827-6
• Global maps of twenty-first century forest carbon fluxes - by Nancy Harris et al.  https://www.nature.com/articles/s41558-020-00976-6
• Maximum warming occurs about one decade after a carbon dioxide emission by Katharine Ricke et al. https://iopscience.iop.org/article/10.1088/1748-9326/9/12/124002
• Confirm Methane's Importance https://arctic-news.blogspot.com/2021/03/confirm-methanes-importance.html
• FAQs https://arctic-news.blogspot.com/p/faq.html

[Author: Sam Carana] [Category: extinction, omnicide, overshoot, rise, temperature, trend]

[*] [+] [-] [x] [A+] [a-]  
[l] at 3/7/21 5:37am
Agriculture, land use and forestry responsible for half of people's greenhouse gases emissions?

The image on the right updates an image from an earlier post on the importance of methane's Gobal Warming Potential (GWP) when assessing the impact of AFOLU (agriculture, forestry, and other land use), as was done by IPCC in its special report Climate Change and Land using a 100-year GWP for methane of 28. 
That figure of 28 came from AR5, an earlier IPCC report. Since AR5 was published, a study found methane's 100-year GWP to be 14% higher than the IPCC value. 
The image on the right therefore uses a short-term GWP for methane of 171 in the panel on the right-hand side, 14% higher than earlier. When using the 171 GWP for methane and when including pre- and post-production activities in the food system, AFOLU (agriculture, forestry, and other land use) causes about half of people's 2007-2016 emissions. 
The black bar in the panel on the right-hand side also shows how much more of peope's emissions over that period were caused by fossil fuel, etc., in particular by the use of natural gas for heating buildings, generating electricity, etc.

Methane's one-year GWP is 200

The image below shows a trendline that is based on IPCC AR5 data that were similarly updated by 14% and that indicates that methane's one-year GWP is 200. 

Methane Levels Rising Rapidly

NOAA data show that methane's global mean for November 2020 was 1891.9 ppb, i.e. 16.3 ppb above the 1875.6 ppb global mean for November 2019. 
Social Cost of Methane
In a January 2021 executive order, President Biden called - among other things - for an update of the 'social cost of methane', to take account of climate risk, of environmental justice, and of intergenerational equity, and to have a dollar figure for agencies to use when monetizing the value of changes in greenhouse gas emissions resulting from regulations and other relevant agency actions. 
Of course, it should be painfully clear by now that the unfolding climate collapse is an existential threat, making it obviousy and vitally important to act on methane. We simply cannot afford to delay action, we cannot afford to do so financially nor in any other way. 
There can be no delay
Let's go over it again. Mean global carbon dioxide was 413.28 ppm in November 2020. Mean global methane was 1891.9 ppb in November 2020, which at a GWP of 200 is 378.38 ppm CO₂e. Together, CO₂ and methane add up to 791.66 ppm CO₂e, which is 408.34 ppm CO2e away from the 1200 ppm CO₂e clouds tipping point.
This 408.34 ppm CO₂e translates into a methane equivalent of 2042 ppb of methane at a GWP of 200. In other words, a doubling of the about 5 Gt of methane that is currently in the atmosphere could make us reach the 1200 ppm CO₂e clouds tipping point and cause an 8°C rise in the global temperature.
Remember the warning of Natalia Shakhova et al., who in 2008 regarded release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.
High peak levels

Ominously, some very high peak levels were recently recorded by the MetOp-1 satellite in the afternoon at 469 mb, i.e. 2930 ppb on March 3 and 2878 ppb on March 4.

As discussed in an earlier post, next to seafloor methane, there are further warming elements that could contribute to a rapid acceleration of the temperature rise.

Conclusion
The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• IPCC special report Climate Change and Land
https://www.ipcc.ch/report/srccl

• IPCC Report Climate Change and Land
https://arctic-news.blogspot.com/2019/08/ipcc-report-climate-change-and-land.html

• Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing - by Maryam Etminan et al. (2018)
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071930

• IPCC keeps feeding the addiction
https://arctic-news.blogspot.com/2018/10/ipcc-keeps-feeding-the-addiction.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• January 2021 executive order by President Biden on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/executive-order-protecting-public-health-and-environment-and-restoring-science-to-tackle-climate-crisis/

• NOAA mean global carbon methane https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4
• NOAA mean global carbon dioxide https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html

• Why stronger winds over the North Atlantic are so dangerous
https://arctic-news.blogspot.com/2020/02/why-stronger-winds-over-north-atlantic-are-so-dangerous.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Methane Hydrates Tipping Point threatens to get crossed
https://arctic-news.blogspot.com/2020/08/methane-hydrates-tipping-point-threatens-to-get-crossed.html

• Arctic Hit By Ten Tipping Points
https://arctic-news.blogspot.com/2020/04/arctic-hit-by-ten-tipping-points.html

• Crossing the Paris Agreement thresholds
https://arctic-news.blogspot.com/p/crossing.html

• 2°C crossed
https://arctic-news.blogspot.com/2020/03/2c-crossed.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Record Arctic Warming
https://arctic-news.blogspot.com/2016/04/record-arctic-warming.html

• There is no time to lose
https://arctic-news.blogspot.com/2020/11/there-is-no-time-to-lose.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html
• Frequently Asked Questions: How much methane could be released, say, within a few years? https://arctic-news.blogspot.com/p/faq.html#10
• 2020: Hottest Year On Record https://arctic-news.blogspot.com/2021/01/2020-hottest-year-on-record.html








[Author: Sam Carana] [Category: agriculture, CO₂e, food, GWP, methane, social cost]

[*] [+] [-] [x] [A+] [a-]  
[l] at 2/22/21 5:41am

by Andrew Glikson

Warnings by leading climate scientists regarding the high sensitivity of the atmosphere in response to abrupt compositional changes, such as near-doubling of greenhouse gas concentrations, are now manifest: According to Wallace Broecker, (the “father” of climate science) “The paleoclimate record shouts out to us that, far from being self-stabilizing, the Earth's climate system is an ornery beast which overreacts to even small nudges, and humans have already given the climate a substantial nudge”. As stated by James Zachos, “The Paleocene hot spell should serve as a reminder of the unpredictable nature of climate”.

As snowstorms such as the Beast from the East (2018) and Storm Darcy (2021) sweep the northern continents, reaching Britain and as far south as Texas and Greece, those who still question the reality and consequences of global climate change, including in governments, may rejoice as if they have a new argument to question global warming.

However, as indicated by the science, these fronts result from a weakened circum-Arctic jet stream boundary due to decreased temperature polarity between the Arctic Circle and high latitude zones in Europe, Russia and North America. The reduced contrast allows migration of masses of cold Arctic air southward and of tropical air northward across the weakened jet stream boundary, indicating a fundamental shift in the global climate pattern (Figure 1).

Figure 1. (A) Extensions from the Arctic polar zone into Europe and North America; (B) Extension into North America; (C) weakening and increasing undulation of the Arctic jet stream boundary (NOAA) allowing intrusion of air masses of contrasted temperature across the boundary.
The weakening of the Arctic boundary is a part of the overall shift of climate zones toward the poles in both hemispheres, documented in detail in Europe (Figure 2). Transient cooling pauses are projected as a result of the flow of cold ice meltwater from Greenland and Antarctica into the oceans, leading to stadial cooling intervals.
Figure 2. Migration of climate zones in Europe during 1981-2010 and under +2°C. Faint pink areas represent advanced warming. (A, left) Agro‐climate zonation of Europe based on growing season length (GSL) and active temperature sum (ATS) obtained as an ensemble median from five different climate model simulations during the baseline period (1981–2010). (B, right) Ensemble median spatial patterns of agro-climate zones migration under 2°C global surface warming according to model RCP8.5. Gray areas represent regions where no change with respect to the baseline period is simulated.
A combination of ice sheet melting and the flow of melt water into the oceans on the one hand, and ongoing warming of tropical continental zones on the other hand, are likely to lead to the following:
  • Storminess due to collisions of cold and warm air masses;
  • As the ice sheets continue to melt, the cold meltwater enhances lower temperatures at shallow ocean levels, as modelled by Hansen et al. (2016) and Bonselaer et al (2018) (Figure 3A), as contrasted with warming at deeper ocean levels over large parts of the oceans. This transiently counterbalances the effects of global warming over the continents arising from the greenhouse effect; 
  • The above processes herald chaotic climate effects, in particular along continental margins and island chains.
Figure 3. A. 2080–2100 meltwater-induced sea-air temperature anomalies relative to the standard RCP8.5 ensemble (Bronselaer et al., 2018), indicating marked cooling of parts of the southern oceans. Hatching indicates where the anomalies are not significant at the 95% level; B. Negative temperature anomalies through the 21st-22nd centuries signifying stadial cooling intervals (Hansen et al., 2016); C. A model of Global warming for 2096, where cold ice melt water occupies large parts of the North Atlantic and circum-Antarctica, raises sea level by about 5 meters and decreases global temperature by -0.33°C (Hansen et al., 2016).
The extreme rate at which the global warming and the shift of climate zones are taking place virtually within a period less than one generation-long, faster than major past warming events such as at the Paleocene-Eocene boundary 56 million years ago, renders the term “climate change” hardly appropriate, since what we are looking at is a sudden and abrupt event

According to Giger (2021) “Tipping points could fundamentally disrupt the planet and produce abrupt change in the climate. A mass methane release could put us on an irreversible path to full land-ice melt, causing sea levels to rise by up to 30 meters. We must take immediate action to reduce global warming and build resilience with these tipping points in mind.”

Computer modelling does not always capture the sensitivity, complexity and feedbacks of the atmosphere-ocean-land system as observed from paleoclimate studies. Many models portray gradual or linear responses of the atmosphere to compositional variations, overlooking self-amplifying effects and transient reversals associated with melting of the ice sheets and cooling of the oceans by the flow of ice melt.

According to Bonselaer et al. (2018) “The climate metrics that we consider lead to substantially different future climate projections when accounting for the effects of meltwater from the Antarctic Ice Sheet. These differences have consequences for climate policy and should be taken into account in future IPCC reports, given recent observational evidence of increasing mass loss from Antarctica” and “However, the effect on climate is not included (by the IPCC) and will not be in the upcoming CMIP6 experimental design. Similarly, the effects of meltwater from the Greenland Ice Sheet have so far not been considered, and could lead to further changes in simulated future climate”. Depending on future warming the effect of Antarctic ice meltwater may extend further, possibly becoming global.

By contrast to ocean cooling, further to NASA’s reported mean land-ocean temperature rise of +1.18°C in March 2020 above pre-industrial temperatures, relative to the 1951-1980 baseline, large parts of the continents, including central Asia, west Africa eastern South America and Australia are warming toward mean temperatures of +2°C and higher. The contrast between cooling of extensive ocean regions and warming of the continental tropics is likely to lead to extreme storminess, in particular along continent-ocean interfaces.

The late 20th century to early 21st century global greenhouse gas levels and regional warming rates have reached a large factor to an order of magnitude faster than warming events of past geological and mass extinction events, with major implications for the nature and speed of extreme weather events.

For these reasons the term “climate change” for the current extreme warming, which is reaching +1.5°C over the continents and more than +3°C over the Arctic over a period shorter than one century, no longer applies.

The world is looking at an extremely rapid shift in the climatic conditions that have allowed civilization to emerge.
Andrew Glikson A/Prof. Andrew Glikson
Earth and Paleo-climate scientist
The University of New South Wales,
Kensington NSW 2052 Australia
Books: The Asteroid Impact Connection of Planetary Evolution http://www.springer.com/gp/book/9789400763272 The Archaean: Geological and Geochemical Windows into the Early Earth http://www.springer.com/gp/book/9783319079073 Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene http://www.springer.com/gp/book/9783319225111 The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth http://www.springer.com/gp/book/9783319572369 Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon http://www.springer.com/gp/book/9789400773318 From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence https://www.springer.com/us/book/9783030106027 Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia http://www.springer.com/us/book/9783319745442







[Author: Sam Carana] [Category: Andrew Glikson, jet stream, meltwater, methane, snowstorms, storminess]

[*] [+] [-] [x] [A+] [a-]  
[l] at 2/12/21 2:20am
by Andrew Glikson
Intergovernmental Panel on Climate Change (IPCC) reports and comprehensive summaries of the peer-reviewed literature raise questions regarding the assumptions inherent in computer modelling of future climate changes, including the supposed linearity of future global temperature trends (Figure 1).

Figure 1. Global mean surface temperature increase as a function of cumulative total global carbon dioxide (CO2) emissions from various lines of evidence. IPCC
Computer modelling does not necessarily capture the sensitivity, complexity and feedbacks of the atmosphere-ocean-land system as observed from paleoclimate studies. Underlying published IPCC computer models appears to be an assumption of mostly gradual or linear responses of the atmosphere to compositional variations. This overlooks self-amplifying effects and transient reversals associated with melting of the ice sheets. 

Leading paleoclimate scientists have issued warnings regarding the high sensitivity of the atmosphere in response to extreme forcing, such as near-doubling of greenhouse gas concentrations: According to Wallace Broecker, “The paleoclimate record shouts out to us that, far from being self-stabilizing, the Earth's climate system is an ornery beast which overreacts to even small nudges, and humans have already given the climate a substantial nudge”. As stated by James Zachos, “The Paleocene hot spell should serve as a reminder of the unpredictable nature of climate”.

Holocene examples are abrupt stadial cooling events which followed peak warming episodes which trigger a flow of large volumes of ice melt water into the oceans, inducing stadial events. Stadial events can occur within very short time, as are the Younger dryas stadial (12.9-11.7 kyr) (Steffensen et al. 2008) (Figure 2) and the 8.2 kyr Laurentian cooling episode,

Despite the high rates of warming such stadial cooling intervals do not appear to be shown in IPCC models (Figure 1).

Figure 2. The younger dryas stadial cooling (Steffensen et al., 2008). Note the abrupt freeze and thaw boundaries of ~3 years and ~1 year.
Comparisons with paleoclimate warming rates follow: The CO₂ rise interval for the K-T impact is estimated to range from instantaneous to a few 103 years or a few 104 years (Beerling et al, 2002) (Figure 3A). An approximate CO₂ growth range of ~1.3 ppm/year applies to the Paleocene-Eocene Thermal Maximum (PETM) (Figure 3B) and 0.12 ppm/year to the Last Glacial Termination (LGT) during 17-11 kyr ago (Figure 3C). Thus the current warming rate is a factor of 2 to 3 higher than that of the Late Glacial Termination (LGT: 17-11 kyr) and 20-30 times faster than the Paleocene-Eocene Thermal Maximum (PETM) 55 million years ago.
Therefore the term “climate change” for the extreme warming reaching +1.5 ° C over the continents and more than +3 ° C over the Arctic over a period of less than 100 years, requires reconsideration.
However, comparisons between the PETM and current global warming may be misleading since, by distinction from the current existence of large ice sheets on Earth, no ice was present about 55 million years ago.


Figure 3. (A) Reconstructed atmospheric CO₂ variations during the Late Cretaceous–early Tertiary, based on -
Stomata indices of fossil leaf cuticles calibrated using inverse regression and stomatal ratios (Beerling et al. 2002);
(B) Simulated atmospheric CO₂ at and after the Palaeocene-Eocene boundary (after Zeebe et al., 2009);
(C) Global CO₂ and temperature during the last glacial termination (After Shakun et al., 2012) (LGM - Last Glacial Maximum; OD – Older dryas; BA - Bølling–Alerød; YD - Younger dryas)
Observed climate complexities leading to the disturbance of linear temperature variations include:
  1. The weakening of climate zone boundaries, such as the circum-Arctic jet stream, allowing cold air and water masses to shift from polar to mid-latitude zones and tropical air masses to penetrate polar zones (Figure 4), induce collisions between air masses of contrasted temperatures and storminess, with major effects on continental margins and island chains.

  2. Amplifying feedbacks, including release of carbon from warming oceans due to reduced CO₂ solubility and therefore reduced intake from the atmosphere, release of methane from permafrost and from marine sediments, desiccated vegetation and extensive bush fires release of CO₂.

  3. The flow of cold ice melt water into the oceans from melting ice sheets—Greenland (Rahmstorf et al., 2015) and Antarctica (Bonselaer et al., 2018)—ensuing in stadial cooling effects, such as the Younger dryas and following peak interglacial phases during the last 800,000 years (Cortese et al., 2007; Glikson, 2019).
Figure 4. Weakening and undulation of the jet stream, shifts of climate zones and penetration of air masses across the weakened climate boundary. NOAA.
In the shorter term such international targets as “zero emissions by 2050” apparently do not include the export of petroleum, coal and gas, thus allowing nations to circumvent domestic emission limits. Australia, the fifth biggest miner and third biggest exporter of fossil fuels, is responsible for about 5% of global greenhouse gas emissions.

At present the total CO₂+CH₄+N₂O level (mixing ratio) is near 500 ppm CO₂-equivalent (Figure 5). From the current atmospheric CO₂ level of above ~415 ppm, at the rise rate of 2 - 3 ppm/year, by 2050 the global CO₂ level would reach about 500 ppm and the CO₂-equivalent near 600 ppm, raising mean temperatures to near-2 ° C above preindustrial level, enhancing further breakdown of the large ice sheets and a further rise of sea levels.
Figure 5. Evolution of the CO₂+CH₄+N₂O level (mixing ratio)

Andrew Glikson

Dr Andrew Glikson
Earth and Paleo-climate scientist
ANU Climate Science Institute
ANU Planetary Science Institute
Canberra, Australia



Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442




[Author: Sam Carana] [Category: Andrew Glikson, CO₂-equivalent, paleoclimate, temperature rise]

[*] [+] [-] [x] [A+] [a-]  
[l] at 2/3/21 11:06pm

As temperatures rise, the weather is getting more extreme. Around the globe, extreme weather events are striking with ever greater frequency and intensity. 

In 2020, in the U.S. alone, a record number of 22 climate and weather disasters took place that each caused damage of more than 1 billion dollar, while jointly causing the deaths of 262 people. 

Rising temperatures cause stronger storms, droughts, heatwaves and forest fires. Rising temperatures are also behind the cold weather that is currently hitting large parts of North America. Two mechanisms that, by distorting the Jet Stream, are contributing to more extreme weather are described below. 

Distortion of the Jet Streams - two mechanisms

Rising temperatures causes stronger storms, heatwaves and forest fires. Rising temperatures are also behind the cold weather that is currently hitting large parts of North America. There are two mechanisms behind this, as described below. 

The Jet Streams used to circumnavigate the globe in narrow bands. World climate zones used to be kept well apart by stable Jet Streams.

Polar Jet Stream and Subtropical Jet Stream - NOAA image On the Northern Hemisphere, the coldest point used to be the North Pole, so wind used to flow from the tropics to the North Pole, while the wind was moved to the side due to Earth's turning. This resulted in two Jet Streams forming, circum-navigating the globe in relatively narrow and straight bands, i.e. the Polar Jet Stream at 60°N and the Subtropical Jet Stream at about 30°N.   
Polar Jet Stream (blue) and Subtropical
Jet Stream (red) - NOAA image First mechanism distorting the Jet Stream

The first mechanism distorting the Jet Stream is that, as the Arctic gets hit much harder by temperature rises, the difference in temperature decreases between the North Pole and the Equator.

This slows down the speed at which wind travels from the Tropics to the North Pole, in turn making the Jet Stream more wavy, just like a slow-moving river over flat land will take a winding route and meander.

This slowing of the Jet Stream is compensated to some extent by the fact that overall, the wind has increased in strength due to the global rise in temperature.

Second mechanism distorting the Jet Stream

Due to the rapid temperature rise of the Arctic Ocean, the North Pole is increasingly not the coldest place on the Northern Hemisphere. 

Instead, the air over Greenland, North Canada and Siberia is increasingly more cold than before, and can be much colder than the North Pole, as illustrated by the ClimateReanalyzer image on the right.

This creates temperature and pressure conditions over the East Pacific and over North America that make the Jet Stream branch out. On the image on the right, the Jet Stream can be seen running over the West Pacific at speeds as high as 387 km/h or 241 mph (green circle) and moving within a relatively narrow band.

The Jet Stream is then confronted with much different conditions over North America that make the Jet Stream branch out widely (white arrows), with one branch moving north and going circular over the Arctic Ocean, while at the other end a branch can be seen dipping below the Equator.

As a result of these two distortion mechanisms, cold air that used to stay contained over the North Pole, can descend more easily over Siberia and North America, causing more extreme weather, while also taking away opportunities for the sea ice to build up to the strength and depth than it used to have. 

The combination image below shows forecasts for February 6, 2021.



The left panel shows that, not far from each other and at the same time, temperature anomalies over North America are forecast to approach the top end and the bottom end of the scale. The right panel shows that temperatures over North America and Siberia are forecast to be much lower than over the Arctic Ocean.

Conclusion

The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links

• 2020: Hottest Year On Record
https://arctic-news.blogspot.com/2021/01/2020-hottest-year-on-record.html

• NOAA - U.S. Billion-Dollar Weather and Climate Disasters: Overview
https://www.ncdc.noaa.gov/billions/overview

• Climate Reanalyzer
https://climatereanalyzer.org
• Nullschool https://earth.nullschool.net

• Polar jet stream appears hugely deformed
https://arctic-news.blogspot.com/2012/12/polar-jet-stream-appears-hugely-deformed.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



[Author: Sam Carana] [Category: distortion mechanism, extreme weather, jet stream]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/29/21 12:15am

Temperatures keep rising. Above image uses NASA data that are adjusted to reflect a 1750 baseline, ocean air temperatures and higher polar anomalies, while showing anomalies going back to September 2011, adding a blue trend going back to 1880 and a red trend going back to September 2011. 
The map below also shows that in November 2020, especially the Arctic Ocean, again was very hot.


Anomalies in the above NASA image are compared to 1951-1980, while NOAA's default baseline for temperature anomalies is the 20th century average. In the Copernicus image below anomalies are compared to the 1981-2010 average. 

Using a different baseline can make a lot of difference. An earlier analysis pointed out that, when using a 1750 baseline and when using ocean air temperatures and higher Arctic anomalies, we did already cross  2°C above pre-industrial in February 2020.  
Above Copernicus image shows temperatures averaged over the twelve-month period from December 2019 to November 2020. The image shows that the shape of the global anomaly over the past twelve months is very similar to the peak reached around 2016. This confirms that global heating is accelerating, because the peak around 2016 was reached under strong El Niño conditions, whereas current temperatures are reached under La Niña conditions. Furthermore, sunspots are currently low. The La Niña and the low sunspots are both suppressing temperatures, as discussed in a recent post.
Future rise?
By how much will temperatures rise over the next few years?


Above image, from the U.N. Emissions Gap Report 2020, shows that growth in greenhouse gas emissions continued in 2019, with emissions reaching a total of 59.1 GtCO₂e. The commitments promised at the Paris Agreement in 2015 were not enough to limit the temperature rise to 1.5°C and those commentments were not even met, said  António Guterres, United Nations Secretary-General, calling on all nations to declare a state of Climate Emergency until carbon neutrality is reached. Earlier, António Guterres had   said : "We are headed for a thundering temperature rise of 3 to 5 degrees Celsius this century." 

What could cause a steep temperature rise over the next few years? 

A temperature rise of more than 3°C above pre-industrial could occur, and this could actually happen within a few years time. There are a number of reasons why the temperature rise could take place so fast, as described below.
As said, the temperature is currently suppressed by the current La Niña and the currently low sunspots (Hansen et al. give the sunpot cycle an amplitude of some 0.25 W/m²). Such short-term differences show up more in the red trend of the image at the top, which uses a polynomial trend over a short period. 
Compensating for the fact that sunspots are currently low and the fact that we're currently a La Niña period can already push the temperature anomaly well over the 2°C threshold that politicians at the Paris Agreement pledged would not be crossed.  

The above NOAA image and the NOAA image below illustrate that we are currently experiencing La Niña conditions.   

How long will it take before we'll reach the peak of the next El Niño? NOAA says:
El Niño and La Niña episodes typically last nine to 12 months, but some prolonged events may last for years. While their frequency can be quite irregular, El Niño and La Niña events occur on average every two to seven years. Typically, El Niño occurs more frequently than La Niña.
There are further reasons why the temperature rise could strongly accelerate over the next few years. Loss of cooling aerosols is one such reason. Another reason is the growing frequency and intensity of forest fires, which come with high emissions of methane, of heating aerosols such as black carbon and brown carbon, and of carbon monoxide that causes hydroxyl depletion, thus extending the lifetime of methane and heating aeosols. 
Map from earlier postThe vertical axis depicts
latitude, t
he North Pole is at the top (90° North),
the Equator in the 
middle (0°) and the South Pole  at the bottom (-90° South). GHCN v4 land-surface air + ERSST v5 sea-surface water temperature  anomaly. The Arctic anomaly reaches 4.83°C or 
8.69°F 
vs 1951-1980, and 5.57°C vs 1885-1914. A hotter world will will also hold more water vapor, a potent greenhouse gas.   
Furthermore, many tipping points affect the Arctic, e.g. more methane and nitrous oxide emissions can be expected to result from continued decline of what once was permafrost. 
The temperature rise is felt the strongest in the Arctic, as illustrated by the zonal mean temperature anomaly map on the right, from an earlier post.
As one of the tipping points gets crossed in the Arctic, multiple feedbacks can start kicking in more strongly, resulting in multiple additional tipping points to subsequently get crossed.   
At least ten tipping points affect the Arctic, as described in an earlier post, and it looks like the latent heat tipping point has already been crossed, as illustrated by the image below, from an earlier post, which shows two such tipping points.   
[ from an earlier post ]
Huge temperature rise

When extending the vertical axis of the image at the top, a picture emerges that shows that a temperature rise of more than 13°C above 1750 could happen by 2026. The trend shows that 10°C is crossed in February 2026, while an additional rise of 3°C takes place in the course of 2026. The temperature could rise this much, in part because at 1200 ppm CO₂e the cloud feedback will start to kick in, which in itself can raise temperatures by an additional 8°C.

And the rise wouldn't stop there! Even when adding up the impact of only the existing carbon dioxide and methane levels, and then adding large releases of seafloor methane, this alone could suffice to trigger the cloud feedback, as described in an earlier post
Of course, there are further warming elements, in addition to carbon dioxide and methane, and they could jointly cause a rise of 10°C by 2026 even in case of smaller releases of seafloor methane, as illustrated by the image below.   
[ from an earlier post ]
[ from an earlier post ] Above image illustrates how a temperature rise of more than as 10°C could eventuate as early as February 2026 when taking into account aerosol changes, albedo changes, water vapor, nitrous oxide, etc., as discussed in an earlier analysis
The joint impact of all warming elements, including the cloud feedback, threatens to cause a total rise of 18°C, as an earlier post warned, adding the image on the right. 
How high could the temperature rise? At a 3°C rise, humans will likely go extinct, while most life on Earth will disappear with a 5°C rise, and as the temperature keeps rising, oceans will evaporate and Earth will go the same way as Venus, a 2019 analysis warned. 
The situation is dire and calls for immediate, comprehensive and effective action, as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• NOAA Global Climate Report - November 2020
https://www.ncdc.noaa.gov/sotc/global/202011

• NASA GISS Surface Temperature Analysis - maps
https://data.giss.nasa.gov/gistemp/maps/index.html

• What are El Niño and La Niña?
https://oceanservice.noaa.gov/facts/ninonina.html
• Multivariate El Niño/Southern Oscillation (ENSO) Index Version 2 (MEI.v2)
https://psl.noaa.gov/enso/mei

• Copernicus - surface air temperature for Novmber 2020
https://climate.copernicus.eu/surface-air-temperature-october-2020

• NOAA ISIS Solar Cycle Sunspot Number Progression
https://www.swpc.noaa.gov/products/solar-cycle-progression

• Secretary-General's address at Columbia University: "The State of the Planet"
https://www.un.org/sg/en/content/sg/speeches/2020-12-02/address-columbia-university-the-state-of-the-planet
• U.N. Emissions Gap Report 2020  https://www.unenvironment.org/emissions-gap-report-2020

• U.N. Climate Ambitions Summit, December 12, 2020
https://www.climateambitionsummit2020.org/ondemand.php

• U.N. Paris Agreement (2015)
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

• Why stronger winds over the North Atlantic are so dangerous
https://arctic-news.blogspot.com/2020/02/why-stronger-winds-over-north-atlantic-are-so-dangerous.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• September 2015 Sea Surface Warmest On Record
https://arctic-news.blogspot.com/2015/10/september-2015-sea-surface-warmest-on-record.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Methane Hydrates Tipping Point threatens to get crossed
https://arctic-news.blogspot.com/2020/08/methane-hydrates-tipping-point-threatens-to-get-crossed.html

• Arctic Hit By Ten Tipping Points
https://arctic-news.blogspot.com/2020/04/arctic-hit-by-ten-tipping-points.html

• Crossing the Paris Agreement thresholds
https://arctic-news.blogspot.com/p/crossing.html

• 2°C crossed
https://arctic-news.blogspot.com/2020/03/2c-crossed.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Record Arctic Warming
https://arctic-news.blogspot.com/2016/04/record-arctic-warming.html

• There is no time to lose
https://arctic-news.blogspot.com/2020/11/there-is-no-time-to-lose.html

• Temperatures threaten to become unbearable
https://arctic-news.blogspot.com/2020/09/temperatures-threaten-to-become-unbearable.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html


[Author: Sam Carana] [Category: 2026, rise, temperature]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/28/21 11:42pm

Orbital changes are responsible for the Milankovitch cycles that make Earth move in and out of periods of glaciation, or Ice Ages. In line with these cycles, July insolation has slowly decreased over the last 12,000 years. While insolation was at a peak some 12,000 years ago, temperatures rose only slowly at first, as the ice receded that was formed during the most recent Ice Age.

Some previous temperature reconstructions did suggest that a peak on temperature was reached around 6,000 to 7,000 years ago, followed by a decrease in temperature that continued until the industrial age. However, Samantha Bova and colleagues found that most of the records used in such reconstructions represented seasonal temperatures rather than annual ones.

They developed a method of evaluating individual records for seasonal bias and after adjusting for this, they found that the mean annual sea surface temperature has been rising steadily for the past 12,000 years, due to retreating ice sheets during the period from 12,000 to 6,500 years ago and, more recently, due to the increase in greenhouse gas emissions.

Paris Agreement

The Paris Agreement calls for a global average temperature well below 2°C above pre-industrial levels, with efforts taken to ensure that the temperature doesn't exceed 1.5°C above pre-industrial levels.

So, what are pre-industrial levels? The 'pre-' in pre-industrial means before, suggesting that pre-industrial levels refers to levels as they were in times before the Industrial Revolution started.

While emission of greenhouse gases did rise strongly since the start of the Industrial Revolution, the rise in emission of greenhouse gases by people had already started some 7,000 years ago with the rise in modern agriculture and associated deforestation. As this new study shows, the temperature has risen steadily since.

A recent post confirms earlier warnings that the temperature may already have risen by more than 2°C, and it looks even more that way when moving the baseline back 7,000 years. Moreover, this recent post again warns that the temperature rise is accelerating as tipping points are getting crossed, feedbacks are growing stronger and further heating elements are kicking, all interacting in non-linear ways to speed up the temperature rise.

So, where are those efforts that politicians pledged they would be taking?

What Carbon Budget?

Instead of making a genuine effort, most politicians and mainstream media keep telling people that there was a carbon budget to be divided among polluters, as if people should happily continue to consume the polluting products that are pushed by advertisers, for decades to come.

In reality, however, there is no carbon budget, there is no pollution budget. Instead, there is just a huge pollution debt to be paid and every minute of delay causes exponential growth of this debt and of the prospect of rapid human extinction and ultimately extinction of all life on Earth.



Conclusion

The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links

• Seasonal origin of the thermal maxima at the Holocene and the last interglacial - by Samantha Bova et al.
https://www.nature.com/articles/s41586-020-03155-x

• Palaeoclimate puzzle explained by seasonal variation
https://www.nature.com/articles/d41586-021-00115-x

• Important Climate Change Mystery Solved by Scientists
https://www.rutgers.edu/news/important-climate-change-mystery-solved-scientists

• Milankovitch (Orbital) Cycles and Their Role in Earth's Climate - by Alan Buis (NASA news, 2020)
https://climate.nasa.gov/news/2948/milankovitch-orbital-cycles-and-their-role-in-earths-climate

• Milankovitch cycles - Wikipedia
https://en.wikipedia.org/wiki/Milankovitch_cycles

• Insolation changes
https://energyeducation.ca/encyclopedia/Insolation
http://www.geo.umass.edu/faculty/bradley/bradley2003x.pdf

• Paris Agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/sites/default/files/english_paris_agreement.pdf

• 2020: Hottest Year On Record
https://arctic-news.blogspot.com/2021/01/2020-hottest-year-on-record.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



[Author: Sam Carana] [Category: budget, carbon, debt, dioxide, rise, Samantha Bova, temperature]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/21/21 7:36am

 by Andrew Glikson

The linear nature of global warming projections by the IPCC (2014) Assessment Report (AR5) (Figure 1) appears to take little account of stadial cooling events, such as have followed peak temperature rises in previous interglacial stages. The linear trends appear to take only limited account of amplifying positive feedback effects of the warming from land and ocean. A number of factors cast doubt on IPCC climate change projections to 2100 AD and 2300 AD, including: Figure 1 (a) IPCC average surface temperature change to 2100 relative to 1986-2005 IPCC AR5;
(b) IPCC average surface temperature change to 2300 relative to 1986-2005 IPCC AR5

However, global temperature measurements for 2015-2020 indicate accelerated warming due to both the greenhouse effect reinforced by a solar radiation maximum (Hansen and Sato 2020) (Figure 2).

Figure 2. Accelerated Global Warming reinforced by both greenhouse  gases and a solar maximum Hansen and Sato, 2020
The weakening of the northern Jet stream, due to polar warming and thus reduced longitudinal temperature contrasts, allows penetration of warm air masses into the polar region and consequent fires (Figure 3). The clash between tropical and polar air and water masses (Figure 3A) leads to regional storminess and contrasting climate change trajectories in different parts of the Earth, in particular along land-ocean boundaries and island chains. 
The weakening of the jet stream and migration of climate zones constitute manifestations of an evolving Earth’s energy imbalance ¹ , namely a decrease in reflection of solar radiation from Earth to space and thereby global warming. Earth retained 0.6 Watt/m² during 2005-2010 and 0.87 Watt/m² during 2010-2020 (Hansen and Sato 2020), primarily due to a rise in greenhouse gases but also due to a solar radiation peak. During 2015-2020 global warming rates exceeded the 1970-2015 warming rate of 0.18°C/per decade, a deviation greater than climate variability. Hansen and Sato (2020) conclude the accelerated warming is caused by an increasing global climate forcing, specifically by the role of atmospheric aerosols.

Figure 3 A. Undulating and weakening jet stream and the polar vortex and penetration
of warm air, inducing Arctic warming and fires.     B. Satellite images of Wildfires
ravaging parts of the Arctic
, with areas of Siberia, Alaska, Greenland and Canada
engulfed in flames and smoke. While wildfires are common at this time of year, record-
breaking summer temperatures and strong winds have made 2020 fires particularly bad.

Bronselaer et al., 2018 modelled a meltwater-induced cooling of the southern hemisphere toward the end 21st century by as low as -1.5°C (Figure 4A). Hansen et al. 2016 estimated the time frame of 21st century stadial cooling event as dependent on the rates of ice melt (Figure 4B), reaching near global extent toward the end of the century (Figure 4C).
Figure 4 A. 2080–2100 meltwater-induced sea-air temperature anomalies relative to
the standard RCP8.5 ensemble (Bronselaer et al., 2018). Hatching indicates where the
anomalies are not significant at the 95% level;  B. Negative temperature anomalies
through the 21st-22nd centuries signifying stadial cooling intervals (Hansen et al., 2016);
C. A model of Global warming for 2096, where cold ice melt water occupies large parts
of the North Atlantic and circum-Antarctica, raises sea level by about 5 meters and
decreases global temperature by -0.33°C (Hansen et al., 2016).

With the concentration of greenhouse gases rising by approximately 47% during the last century and a half, faster than almost any observed rise in the Cenozoic geological record, the term “climate change” refers to an extreme shift in state of the atmosphere-ocean system. The greenhouse gas rise and temperature rise rates are faster than those of the K-T mass extinction, the Paleocene-Eocene extinction and the last glacial termination.

The consequences for future climate change trends include:
  • Further expansion of the tropical climate zones and a polar-ward shift of intermediate climate zones, leading to encroachment of subtropical deserts over fertile Mediterranean zones. 
  • Spates of regional to continent-scale fires, including in Brazil, Siberia, California, around the Mediterranean, Australia.
  • A weakened undulating jet stream (Figure 3) allowing penetration of and clashes between warm and cold air and water masses, with ensuing storms. 
  • In Australia the prolonged drought, low vegetation moisture, high temperatures and warm winds emanating from the northern Indian Ocean and from the inland, rendering large parts of the continent tinder dry and creating severe fire weather subject to ignition by lightning.
  • The delayed melting of the large ice sheets due to hysteresis ² , would be followed by sea level rise to Pliocene levels, ~25 meters above pre-industrial levels, once sea level reaches equilibrium with temperature of 2 to 3 degrees Celsius or higher, changing the geography of the continents.
It would follow from these considerations that succeeding periods of peak temperatures, extensive melting of the ice sheets, flow of ice melt into the oceans and thereby stadial cooling would lead to clashes between tropical fronts and cooling masses of air, producing storminess, in particular along continental margins and island chains. The modelled time frame of these developments (Figure 4B) may be cyclical, or may extend further in time and place as long as the ice sheets continue to breakdown.

¹ Earth's energy imbalance is the difference between the amount of solar energy
absorbed 
by Earth  and the amount of energy the planet radiates to space as heat.
If the imbalance is 
positive, more energy coming in than going out, we can expect
Earth to become warmer in t
he future — but cooler if the imbalance is negative. ²  Hysteresis is the dependence of the state of a system on its history. For example the 
melting of an ice sheet may occur slowly depending on its previous state.
Andrew Glikson

Dr Andrew Glikson
Earth and Paleo-climate scientist
ANU Climate Science Institute
ANU Planetary Science Institute
Canberra, Australia


Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442





[Author: Sam Carana] [Category: Andrew Glikson, climate forcing, IPCC, paleoclimate, trends]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/21/21 6:03am

by Andrew Glikson

It is hard to think of a more Orwellian expression than that describing the increase in toxic atmospheric methane gas as “gas-led recovery.”

Several of the large mass extinctions of species in the geological past are attributed to an increase in atmospheric methane (CH₄), raising the temperature of the atmosphere and depriving the oceans from oxygen. Nowadays a serious danger to the atmosphere and for the life support systems ensues from the accelerated release of methane from melting Arctic permafrost, leaks from ocean sediments and from bogs, triggered by global warming. As if this was not dangerous enough, now methane is extracted as coal-seam-gas (CSG) by fracking (hydraulic fracturing) of coal and oil shale in the US, Canada, Australia and elsewhere.

Methane-bearing formations, located about 300m-1000m underground, are fracked using a mixture of water, sand, chemicals and explosives injected into the rock at high pressure, triggering significant amounts of methane leaks into the overlying formations and escaping into the atmosphere (Figure 1).

Figure 1. Schematic illustration of coal-seam-gas fracking (R. Morrison, by permission).

CSG is made primarily of about 95-97% methane, which possesses a radiative greenhouse potential close to X80 times that of carbon dioxide (CO₂). The radiative greenhouse effect of 1 kg methane is equivalent to releasing 84 kg of CO₂ and decreases to 20 and 34 times stronger than CO₂ over a 100-year period.

Global methane deposits (Figure 2) and Australian methane-bearing basins (Figure 3) are proliferating. Fugitive emissions from CSG are already enhancing the concentration of atmospheric methane above drill sites and range from 1 to 9 percent during the total life cycle emissions. The venting of methane from underground coal mines in the Hunter region of New South Wales has led to an atmospheric level in the region of 3,000 parts per billion, with methane levels of 2,000 ppb (parts per billion) extending to some 50 km away from the mines. Peak readings in excess of 3000 ppb represent an amalgamation of plumes from 17 sources. The median concentration within this section was 1820 ppb, with a peak reading of 2110 ppb. Compare this with mean methane values at Mouna Loa, Hawaii, of 1884 ppb.
Figure 2. Global gas hydrate potential regions.
Fugitive methane emissions from natural, urban, agricultural, and energy-production landscapes of eastern Australia. The chemical signature of methane released from fracking is found in the atmosphere points to shale gas operations as the source.

Figure 3. Australian basins, oil and gas resources.
The accumulation of many hundreds of billions tons of unoxidized methane-rich organic matter in Arctic permafrost, methane hydrates in shallow Arctic lakes and seas, bogs, and as emanated from cattle and sheep, has already enhanced global methane growth over the last 40 years at rates up to 14 ppb/year (Figure 4).

Figure 4. Growth of atmospheric methane, Mouna Loa, Hawaii,
between 1980-2020 and 2017-2020. NOAA.

The current methane level of 1884 ppb, ~2.5 times the <800 ppb level in 1840AD, indicating a mean growth rate of ~7 ppb/year (Figure 4), is attributable to in part to animal husbandry, permafrost melting, release from marine hydrates and bogs, and in part emissions from shale gas and fracking. as in the United States and Canada.

High levels of methane reduce the amount of oxygen breathed from the air, with health consequences. The toxicity of methane is corroborated in a 2018 study in Pennsylvania showing children born within a mile or two of a gas well were likely to be smaller and less healthy. New York State, Maryland, and Vermont have banned fracking, as have France and Germany.
According to Hansen (2018) reserves of unconventional gas exceed 10,000 GtC (billion tons carbon). Given the scale of methane hydrate deposits around the world (Figure 5), sufficient deposits exist to perpetrate a global mass extinction of species on a geological scale.¹ 
Figure 5. Estimates of methane held in hydrates worldwide. Estimates of the Methane Held in Hydrates Worldwide. Early estimates for marine hydrates (encompassed by the green region), made before hydrate had been recovered in the marine environment, are high because they assume gas hydrates exist in essentially all the world’s oceanic sediments. Subsequent estimates are lower, but remain widely scattered (encompassed by the blue region) because of continued uncertainty in the non-uniform, heterogeneous distribution of organic carbon from which the methane in hydrate is generated, as well as uncertainties in the efficiency with which that methane is produced and then captured in gas hydrate. Nonetheless, marine hydrates are expected to contain one to two orders of magnitude more methane than exists in natural gas reserves worldwide (brown square) (U.S. Energy Information Administration 2010). Continental hydrate mass estimates (encompassed by the pink region) tend to be about 1 per cent of the marine estimates.

¹ For 2.12 billion ton of carbon (GtC) raising atmospheric CO₂ by 1ppm, and assuming about 50% of CO₂ remaining in the atmosphere, future drilling and fracking could in principle raise atmospheric CO₂ level to about or more than 2000 ppm.


Andrew Glikson

Dr Andrew Glikson
Earth and Paleo-climate scientist
ANU Climate Science Institute
ANU Planetary Science Institute
Canberra, Australia



Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442




[Author: Sam Carana] [Category: Andrew Glikson, CSG, fracking, methane]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/15/21 3:42am
by Andrew Glikson
[ Oil and gas fracking pads in Texas. Photo: Dennis Dimick ]

It should raise people’s hopes to believe “net zero emissions by 2050” will arrest or at least slow-down global warming, had it not been yet another cruel hoax perpetrated in the wake of more than 50 years of obfuscation and denial of environment and climate science.

This is because:

For this reason, the essential reductions in emission must be accompanied with sequestration of atmospheric greenhouse gases by at least the amount of annual emissions.

The authorities are not listening to what climate science is indicating. Instead they are consulting with economists ignorant of the physics and chemistry of the atmosphere and of the consequences of global heating. An example is the absurd idea as if “a rise of 4°C in global average temperature would be “optimal” when the costs and benefits of mitigating climate change are balanced”.

Currently, CO2 concentrations in the atmosphere are increasing at the approximate rate of 2 to 3 parts per million per year. This leaves the fundamental question unanswered: What, if anything, would halt the fatal progression toward +4 degrees Celsius above pre-industrial temperatures, given that according to the IPCC (cited by the World Bank) a “four degree world would be one of unprecedented heatwaves, severe drought and major floods in many regions”. In perspective, global warming of the 20-21st centuries is at least 70 times faster than the rise of about 5 degrees Celsius over a period of about 7000 years since the last interglacial period. At this rate of environmental change mass extinctions are inevitable. When Professor Hans Joachim Schellnhuber (former climate adviser to the German Chancellor and the EU) was asked about the difference between a +2°C and a +4°C world, he replied: “Human civilization”.

 


Andrew Glikson

Dr Andrew Glikson
Earth and Paleo-climate scientist
ANU Climate Science Institute
ANU Planetary Science Institute
Canberra, Australia



Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442



[Author: Sam Carana] [Category: Andrew Glikson, drilling, emissions, fracking, mining, net-zero]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/15/21 2:45am
by Andrew Glikson
The concept of a global climate tipping point/s implies a confluence of climate change processes in several parts of the world where regional climate changes can combine as a runaway shifts to a new climate state. Conversely the shift of climate zones can constitute the underlying factor that triggers extreme weather events which culminate in tipping points. These shifts include the expansion of the tropics, tropical cyclones, mid-latitude storms and weakening of boundaries of the polar vortex, allowing breach of air masses of contrasting temperatures through the jet stream polar boundary, with ensuing snow storms and heatwaves.

Figure 1.  Climate tipping points ( McSweeney 2020 )
The migration of climate zones toward the poles appears to constitute a major factor in triggering tipping points in the Earth system (Figures 1 and 2), including (from north to south):
  1. permafrost loss 
  2. expansion of the Boreal forest at the expense of the tundra
  3. disintegration of the Greenland ice sheet
  4. breakdown of the Atlantic meridional overturning circulation (AMOC) caused by an increased influx of freshwater into the North Atlantic 
  5. Amazon forest dieback 
  6. West African monsoon shift 
  7. Indian monsoon shift 
  8. Coral reef die-off
  9. West Antarctic ice disintegration
Not included in this list are the increased desertification and the extensive fires in parts of the continents, including the Arctic, Siberia, western North America, the Mediterranean, Brazil and Australia.
Figure 2.   Monthly anomalies for October 2020 by NOAA (National Centers for Environmental Information)
A conflation of regional climate developments into global climate tipping point/s, namely a shift in state of the Earth climate is likely, although the details of this process are not clear. Alternatively it is the migration of climate zones toward the poles, indicated by climate zone maps, which is triggering regional events.
Figure 3. High anomalies over the Arctic from Nov. 2019 to Oct. 2020 (NASA image)
Here I list some of these likely relationships: 
  • In the Arctic sea ice extent in October 2020 was lower by 36.8% than during 1981-2010 (Figure 2). High anomalies have hit the Artic Ocean and Siberia over the 12-month period from November 2019 to October 2020 (Figure 3). The warming of the Arctic is driven by (1) a decline in albedo due to ice melt and exposure of open water surfaces; (2) the albedo flip generated by formation of thin water surfaces above ice sheets and glaciers, and (3) the penetration of warm air masses through the weakened circum-Arctic jet stream (Figure 4.). 
  • The tropics are expanding at a rate of near-50 km per decade (Jones 2018) and have widened about 0.5° latitude per decade since 1979 (Staten et al. 2018). With warming and desertification effects across North Africa and the Mediterranean Sea this is leading to draughts and fires in southern Europe. The shift of climate zones toward the poles, at a rate approximately 50 to 100 km per decade, as well as sea level rise, is changing the geography of the planet. Once sea level reaches equilibrium temperatures it will attain at least 25 meters above the present, by analogy to Pliocene level (before 2.6 million years ago).
  • As climate zones shift northward an increase of winter precipitation of up to 35% is recorded in mid to northern Europe during the 21st century, with increases of up to 30% in north-eastern Europe. In 2020 Europe had the warmest October on record and North America the heaviest snow precipitation on record (Figure 2). 
  • In Australia a southward migration of the tropical North Australia climate zone and the high pressure ridge separating it from the southern terrain dominated by the Westerlies and the precipitation-bearing spirals of the Antarctic-sourced vortex southward, with consequent droughts in southern and southwestern parts of the continent. 
Figure 4. The Arctic jet stream, summer, 1988, NASA. Extreme melting in 
Greenland’s ice sheet is linked to warm air delivered by the wandering jet 
stream, a fast-moving belt of westerly winds created by the convergence of 
cold air masses descending from the Arctic and rising warm air masses from 
the tropics that flow through the lower layers of the atmosphere.

As evident from the above the shift in climate zones constitutes the underlying factor which triggers extreme weather events and tipping points.
Figure 5. Arctic surface-air temperature anomalies for July 2020.

Since the onset of the industrial age, in particular since about 1960-70, global warming accelerated at by one to two orders of magnitude faster than during the last glacial termination (~16000 – 8000 years ago) and much earlier. Mass extinction events in the Earth history have occurred when environmental changes took place at a rate to which species could not adapt. Plants and animals are currently dying off at a rate 100 to 1000 times faster than the mean rate of extinction over geological timescales.
The Intergovernmental Panel for Climate Change (IPCC AR5) projects linear warming to 2300 and 2500, which however does not take full account of amplifying feedbacks from a range of sources (Trajectories of the Earth system in the Anthropocene). These include reduced CO2 sequestration in the warming oceans, albedo changes due to melting of ice, enrichment of the atmosphere in water vapor, desiccation and burning vegetation, release of methane from permafrost. Nor do these linear trends take account of the stadial effects of the flow of cold ice melt water into the oceans (Glikson, 2019).

According to the National Oceanic and Atmospheric Agency (NOAA) global warming has accelerated significantly during 2015-2020. The danger inherent in temperature rise to about 4 degrees Celsius by 2100 is underpinned by the consequences at lower temperature rise of +1 to +2 degrees Celsius, already in evidence. Thus, whereas the mean land-ocean temperature rise between 1880-2020 is +1.16 degrees Celsius, the average rise in continental temperatures during this period has already reached +1.6 degrees Celsius, beyond the upper limit proposed by the Paris Accord. The rise in temperatures is driving a three-fold to six-fold rise in extreme weather events since 1980 (Figure 6.), including severe storms, tropical storms, flooding, droughts and wildfires (NOAA 2018).
Figure 6. The growth in the frequency of extreme weather events in the US during 1980-2018
Large-scale melting of the Greenland and Antarctica ice sheets, discharging cold ice melt water, is already cooling of parts of the oceans. The clash between cold air masses and tropical fronts would increase storminess, in particular along coastal boundaries and islands. Such storminess, along with intensified tropical cyclones, would render island chains increasingly vulnerable.

To date most suggestions for mitigation and adaptation are woefully inadequate to arrest global warming. Reductions in carbon emissions, which are absolutely essential, may no longer be adequate to arrest accelerating greenhouse gas and temperature levels. At the current level of carbon dioxide (>500 parts per million equivalent CO2+methane+nitrous oxide), reinforced by amplifying feedbacks from land and oceans, the remaining option would be to sequester (down-draw) greenhouse gases from the atmosphere.

A global imperative.


Andrew Glikson

Dr Andrew Glikson
Earth and Paleo-climate scientist
ANU Climate Science Institute
ANU Planetary Science Institute
Canberra, Australia



Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442







[Author: Sam Carana] [Category: Andrew Glikson, feedbacks, tipping points]

[*] [+] [-] [x] [A+] [a-]  
[l] at 1/15/21 1:59am

 NASA data show that 2020 was the hottest year on record. 


The image below shows that high temperature in 2020 hit Siberia and the Arctic Ocean. 

In above images, the temperature anomaly is compared to 1951-1980, NASA's default baseline. When using an earlier baseline, the data need to be adjusted. The image below shows a trendline pointing at an 0.31°C adjustment for a 1900 baseline. 


Additional adjustment is needed when using a 1750 baseline, while it also makes sense to add further adjustment for higher polar anomalies and for air temperatures over oceans, rather than sea surface temperatures. In total, a 0.78°C adjustment seems appropriate, as has been applied in earlier analyses. 
Furthermore, we're currently in a La Niña and we're in a low in the 11-year sunspots cycle. Such variables show up better when looking at a shorter period and when using trendlines based on monthly data. 


[ Work on this post is still in progress, please return soon ]


Links

• NASA Global Land-Ocean Temperature Index
https://data.giss.nasa.gov/gistemp

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html








[Author: Sam Carana] [Category: 2020, anomalies, temperature, temperature anomaly, trend]

[*] [+] [-] [x] [A+] [a-]  
[l] at 12/22/20 9:24pm

Above image shows that, in October 2020, the Arctic Ocean was very hot. The Copernicus image below shows temperatures averaged over the twelve-month period from November 2019 to October 2020.

Keep in mind that, in the Copernicus image, anomalies are compared to the 1981-2010 average.

Note that the shape of the recent twelve-month period is similar to the 2016 peak, when there was a strong El Niño, while in October 2020 the temperature was suppressed due to La Niña and due to low sunspots.

The image below shows how a hot Arctic Ocean distorts the Jet Stream and hot air moves all the way up to the North Pole. 

Above image shows the Northern Hemisphere at November 12, 2020, with a temperature forecast of 2.0°C or 35.5°F at the North Pole at 1000 hPa at 15:00Z. On the right, jet stream crosses the Arctic Ocean (at 250 hPa). At surface level, a temperature was forecast to be 0.6°C or 33.2°F. 


As it turned out, the highest temperature at the North Pole was 1.1°C or 34.1°F on November 12, 2020, at 1000 hPa at 18:00Z, as above image shows. At 15:00Z that day, a temperature of 1.9°C or 35.3°F was recorded at 1000 hPa just south of the North Pole, at 89.50° N, 1.50° E.

The image below shows temperature anomalies for November 12, 2020, with forecasts approaching 30°C. 


[ Click on images to enlarge ]
These high temperatures over the Arctic Ocean are caused by transfer of huge amounts of heat from the Arctic Ocean to the atmosphere, indicating severe overheating of the Arctic Ocean as a result of the ongoing movement of ocean heat at the surface of the North Atlantic to the Arctic Ocean along the Gulf Stream. 
As the image on the right shows, temperature anomalies above 20°C were recorded over a large part of the Arctic Ocean on November 16, 2020. 
As illustrated by the image below, temperature anomalies are forecast to remain high over the Arctic Ocean, with the forecast for November 26, 2020, showing anomalies approaching 30°C. 

The resulting distortion of the Jet Stream can at times speed up winds that move hot air from the North Atlantic Ocean toward to Arctic Ocean, as illustrated by the image at the top. 
[ click on images to enlarge ]
The image on the right shows that the Jet Stream was as fast as 411 km/h or 255 mph south of Greenland (at the green circle), before crossing the Arctic Ocean on November 4, 2020. 
The image below shows how, on November 20, 2020 15:00 UTC, a distorted Jet Stream reaches a speed of 327 km/h or 203 mph (at circle, globe left). At 850 hPa, wind reaches speeds as high as 161 km/h or 100 mph (circle, globe right). 

The danger is that such strong wind will speed up ocean currents in the North Atlantic that carry huge amounts of heat toward the Arctic Ocean. 


The image below shows sea surface temperature anomalies compared to 1981-2011 on the Northern Hemisphere on October 23, 2020, when anomalies off the coast of North America were as high as 10.8°C or 19.5°F (left), and on December 3, 2020, when anomalies off the coast of North America were as high as 12.7°C or 22.8°F (right). 

According to a recent news report, an atmospheric river smashed into Juneau, Alaska, dropping 5.08 inches of rain in 24 hours ending 3 a.m. Wednesday December 2, 2020.

This is not an isolated event, but a symptom of the unfolding catastrophe referred to as global warming, which threatens to remove all life from Earth.
Sea surface temperatures around North America are very high. The above image shows that sea surface temperatures were as much as 12.7°C or 22.8°F higher than 1981-2011 off the east coast of North America on December 3, 2020 (green circle). On the image below, the globe on the left shows that sea surface temperature anomalies (SSTA) were as high as 4.1°C or 7.3°F off the west coast of North America on December 4, 2020 (at the green circle).

These high sea surface temperatures speed up de Jet Stream over oceans. At this time of year, temperatures over continents are low, so there is greater ocean/land temperature difference, which further speeds up the Jet Stream where it travels over oceans toward continents. The center globe shows wind as fast as 381 km/h or 237 mph at the time (at circle). 
At the same time, the narrowing temperature difference between the Equator and the North Pole is slowing down the Jet Stream. This is making the Jet Stream more wavy at higher latitudes, even resulting in circular wind patterns, and this can make a lot of cold air leave the Arctic and move over continents, thus further widening the ocean/land temperature difference. Given that more than 90% of global warming goes into oceans, this is an important self-reinforcing feedback of global warming. 
Stronger wind results in stronger evaporation, which cools down the sea surface somewhat, as the blue areas over the Pacific Ocean indicate. Due to the strong wind, much of the moisture falls down farther on the path of the wind. The globe on the right shows 3-hour precipitation accumulation as high as 31.3 mm or 1.23 in off the west coast of North America (green circle). 

The image below shows an earlier analysis, describing the situation in September 6, 2020, when high sea surface temperatures on the Northern Hemisphere and a narrow difference between the Equator and the North Pole distorted the Jet Stream, making it cross the Arctic Ocean, form circular wind patterns and reach speeds as fast as 262 km/h or 163 mph (250 hPa, green circle) over the North Atlantic. The globe on the right shows that the Gulf Stream off the North American coast reached speeds of 8 km/h or 5 mph (at green circle). 
[ click on images to enlarge ]

More ocean heat can move into the Arctic Ocean for a number of reasons, including: 
  • At times, the Jet Stream becomes very strong and elongated over the North Atlantic, speeding up the flow of ocean heat along the path of Gulf Stream all the way to the Arctic Ocean;
  • Overall, winds are getting stronger, speeding up ocean currents running just below the sea surface;
  • Stratification of the North Atlantic results in less heat mixing down to lower parts of the ocean; and 
  • Increased evaporation and increased subsequent rainfall farther down the path of the Gulf Stream forms a colder freshwater lid stretched out at the sea surface from the North Atlantic to the Arctic Ocean, sealing off transfer of heat from ocean to atmosphere and consequently moving more heat just underneath the sea surface into the Arctic Ocean.

    [ from earlier post ]
As the image below shows, sea surface temperatures as high as 16.6°C or 61.9°F were recorded north of Svalbard on November 9, 2020. 

As the image below shows, the N2O satellite recorded a peak methane level of 2762 ppb on the morning of November 16, 2020.

As the image below shows, the MetOp-1 satellite recorded a peak methane level of 2725 ppb on the afternoon of November 18, 2020.


The video below shows a methane plume or bubble cloud spotted by a team of 69 scientists from ten countries documenting bubble clouds rising from a depth of around 300 metres (985ft) along a 150km (93 mile) undersea slope in the Laptev Sea.

The danger is that even more hot and salty water will reach the shallow parts of the Arctic Ocean that contain huge amounts of methane in the form of hydrates and free gas in sediments at the seafloor, resulting in huge eruptions of methane that, on its own, could almost instantly cause the 1200 ppm CO₂e cloud feedback tipping point to be crossed, which can cause global temperatures to rise by 8°C.
Latent heat loss, feedback #14 on the Feedbacks page
The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html
• NASA GISS Surface Temperature Analysis - global maps https://data.giss.nasa.gov/gistemp/maps/index.html
• Copernicus - surface air temperature for October 2020 https://climate.copernicus.eu/surface-air-temperature-october-2020
• Climate Reanalyzer https://climatereanalyzer.org/
• nullschool earth wind map https://www.nullschool.net
• Atmospheric River Smashes Alaskan Capital’s 24-Hour Rain Record https://weather.com/news/news/2020-12-02-juneau-alaska-all-time-rain-record
• Bubbling methane craters and super seeps - is this the worrying new face of the undersea Arctic? - by Valeria Sukhova, Olga Gertcyk - Siberian Post https://siberiantimes.com/other/others/news/bubbling-methane-craters-and-super-seeps-is-this-the-worrying-new-face-of-the-undersea-arctic/
• Why stronger winds over the North Atlantic are so dangerous https://arctic-news.blogspot.com/2020/02/why-stronger-winds-over-north-atlantic-are-so-dangerous.html
• Feedbacks in the Arctic https://arctic-news.blogspot.com/p/feedbacks.html
• September 2015 Sea Surface Warmest On Record https://arctic-news.blogspot.com/2015/10/september-2015-sea-surface-warmest-on-record.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Methane Hydrates Tipping Point threatens to get crossed
https://arctic-news.blogspot.com/2020/08/methane-hydrates-tipping-point-threatens-to-get-crossed.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Warning of mass extinction of species, including humans, within one decade https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html


[Author: Sam Carana] [Category: Arctic, heat, North Pole, ocean]

[*] [+] [-] [x] [A+] [a-]  
[l] at 12/22/20 8:29pm
Carbon dioxide levels continue at record levels, despite COVID-19 lockdown, the WMO reports. The increase in carbon dioxide from 2018 to 2019 was larger than that observed from 2017 to 2018 and larger than the average annual growth rate over the last decade.

The rise has continued in 2020. The lockdown did cut emissions of many pollutants and greenhouse gases, but any impact on carbon dioxide levels - the result of cumulative past and current emissions - is in fact no bigger than the normal year to year fluctuations. 

“Carbon dioxide remains in the atmosphere for centuries and in the ocean for even longer. The last time the Earth experienced a comparable concentration of CO₂ was 3-5 million years ago, when the temperature was 2-3°C warmer and sea level was 10-20 meters higher than now. But there weren’t 7.7 billion inhabitants,” said WMO Secretary-General Professor Petteri Taalas.

“The COVID-19 pandemic is not a solution for climate change. However, it does provide us with a platform for more sustained and ambitious climate action to reduce emissions to net zero through a complete transformation of our industrial, energy and transport systems. The needed changes are economically affordable and technically possible and would affect our everyday life only marginally. It is to be welcomed that a growing number of countries and companies have committed themselves to carbon neutrality,” he said. “There is no time to lose.”


Above image illustrates the steep rise in methane, compared to carbon dioxide and nitrous oxide. Levels of carbon dioxide, methane and nitrous oxide reached new highs in 2019, reports the WMO. Carbon dioxide (CO₂) rose to 410.5 ppm (148% of its pre-industrial level), methane (CH₄) to 1877 ppb (260% of pre-industrial) and nitrous oxide (N₂O) to 332.0 ppb (123% of pre-industrial).

So, given that there's no time to lose, why mention carbon neutrality, and not 100% clean, renewable energy? Also, let's not lose sight of other emissions such as N₂O. Yes, dramatic cuts in CO₂ emissions do need to happen rapidly, and yes, this does require a complete transformation of industry, energy and transport. Nonetheless, N₂O emissions are also important and most N₂O emissions result from land use, such as food production and waste handling, which must also change. 
[ from earlier post ] The IPCC (AR5) gave N₂O a lifetime of 121 years and a 100-year global warming potential (GWP) of 265 times that of carbon dioxide. Furthermore, N₂O also causes stratospheric ozone depletion. 
The IPCC, in special report Climate Change and Land, found that agriculture, forestry and other land use activities accounted for some 13% of CO₂, 44% of CH₄, and 82% of N₂O emissions from human activities globally during 2007-2016, representing 23% of total net anthropogenic emissions of greenhouse gases.

If emissions associated with pre- and post-production activities in the global food system are included, the emissions could be another 14% higher, i.e. as high as 37% of total net anthropogenic greenhouse gas emissions, the IPCC added.
Let's get back to that 23%. The IPCC calculates this 23% by using a GWP of 28 for CH₄. Over the first few years, however, the GWP of CH₄ is more than 150, as discussed in an earlier post. When using a GWP of 150, land use emissions rise from 23% to 31%, as the image on the right shows. Add another 14% from further food-related emissions and the total share for land use becomes 45% of people's emissions. 

In other words, all polluting emissions need to be reduced. Moreover, a recent paper by Jorgen Randers et al. points out that, even if all greenhouse gas emissions by people would stop immediately, and even if CO₂ levels in the atmosphere would revert back to pre-industrial levels, overall temperatures would still keep rising for centuries to come. Another recent paper, by Tapio Schneider et al., points out that solar geoengineering may not prevent strong warming from direct effects of CO2 on stratocumulus cloud cover. 

This means that the threat is even more menacing when including large methane releases that threaten to occur as temperatures keep rising in the Arctic and sediments at the seafloor of the Arctic Ocean threaten to get destabilized, resulting in the eruption of huge amounts of methane. 
What is the joint impact of carbon dioxide and methane? The WMO reported CO₂ levels of 410.5 ppm and CH₄ levels of 1877 ppb in 2019. As discussed in an earlier post, over the first few years after release, methane's GWP is more than 150 times higher than carbon dioxide. Accordingly, the 2019 level of 1877 ppb of methane translates into global heating of 281.55 ppm CO₂e. Together, that makes 692.5 ppm CO₂e, which is 507.5 ppm CO₂e away from the 1200 ppm CO₂e cloud tipping point
The image below illustrates that the joint impact of carbon dioxide and methane could cause the 1200 ppm CO₂e tipping point to be crossed in 2040. The image uses IPCC and WMO through 2019 to display three lines, with added trends:  - Black line: CO₂ in parts per million (ppm);
- Red line: CH₄ in ppm CO₂e, using a GWP of 150;
- Purple line: CO₂ and CH₄ in ppm CO₂e.

Trends for CH₄ are selected to reflect a steep rise as a result of methane hydrate destabilization. 
How could such a steep rise in methane levels occur?

Stronger methane releases from subsea permafrost can be expected, says a paper by Natalia Shakhova et al. A 1000-fold methane increase could occur, resulting in a rise of as much as 6°C within 80 years, with more to follow after that, according to a paper by Atsushi Obata et al.

Seafloor methane releases could be triggered by strong winds causing an influx of warm, salty water into the Arctic ocean (see earlier post). 
Since little hydroxyl is present in the atmosphere over the Arctic, it is much harder for this methane to get broken down.

Even relatively small methane releases could cause tremendous heating, if they reach the stratosphere.

Methane rises from the Arctic Ocean concentrated in plumes, pushing away the aerosols and gases that slow down the rise of methane elsewhere, which enables methane erupting from the Arctic Ocean to rise straight up fast and reach the stratosphere. 

The IPCC (AR5) gave methane a lifetime of 12.4 years. The IPCC (TAR) gave stratospheric methane a lifetime of 120 years, adding that less than 7% of methane did reach the stratosphere at the time.
The images on the right illustrate this. On November 20 pm, 2020, the MetOp-1 satellite recorded high methane levels over the Arctic Ocean at 293 mb (top image on the right). This corresponds with an altitude of some 9 km altitude, which is where the Stratosphere starts at the North Pole. The global mean methane level at that altitude was 1921 ppb.
The next images show areas with high levels of methane, as indicated by the magenta color, remaining present over the Arctic Ocean even at higher altitudes.
The higher the altitude, the more methane will concentrate over the Equator. Yet at 229 mb, high methane levels are still visible north of Siberia, while global mean methane levels were still very high, i.e. 1916 ppb. 
Even at 156 mb, there still are high methane levels visible (green circle, third image right). 
The conversion table shows that the Tropopause, which separates the Troposphere from the Stratosphere, is lower over the North Pole (at about 9 km altitude) than over the Equator (17 km altitude). 
The fifth image on the right, from an earlier post, shows that methane has accumulated more at higher altitudes over the years. 
The sixth image on the right shows that the MetOp-1 satellite recorded mean methane levels of 1925 ppb at 293 mb on December 2, 2020 am, with high methane levels present over the Arctic Ocean.
The next image shows that a peak methane level of 2715 ppb was recorded by the SNPP satellite on November 30, 2020 pm at 399.1 mb.
The animation on the right shows high methane levels recorded by the MetOp-2 satellite on December 2, 2020 pm, at a number of altitudes: 

- At 1000 mb (close to ground/sea level) a peak methane level of 2129 ppb shows up north of Svalbard. 

- At 918 mb, methane peaks at 2408 ppb and high methane levels show up over the Artic Ocean.

- At 815 mb, methane reaches a peak of 2582 ppb and high methane levels are visible over larger parts of the Arctic Ocean. 
- At 742 mb, methane reaches a peak of 2663 ppb and high methane levels are visible over even larger parts of the Arctic Ocean. 
- At 586 mb, methane reaches a peak of 2518 ppb and high methane levels are visible over a huge part of the Arctic Ocean, while hardly any high levels of methane are visible over land. 
- At 293 mb, methane reaches a peak of 2411 ppb and high levels of methane are still visible over the Arctic Ocean, even at this high altitude. 
[ from earlier post ] In conclusion, a huge temperature rise could occur soon, even with a relatively small increase in carbon dioxide and methane releases. 
As above image illustrates, a temperature rise of more than as 10°C could eventuate as soon as 2026 when taking into account aerosol changes, albedo changes, water vapor, nitrous oxide, etc., as an earlier analysis shows. 
The joint impact of these warming elements threatens the cloud tipping point to be crossed and the resulting 8°C rise would then come on top of the 10°C rise, resulting in a total rise of 18°C, as illustrated by the image on the right, from an earlier post.

Indeed, there is no time to lose. It is high time to stop the denial of the size of the threats and challenges that the world faces, the harm inflicted and the speed at which developments could strike. 
The situation is dire and calls for immediate, comprehensive and effective action, as described in the Climate Plan

Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• IPCC AR5 Workgroup 1
https://www.ipcc.ch/assessment-report/ar5/ and https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf
• IPCC Report Climate Change and Land
https://arctic-news.blogspot.com/2019/08/ipcc-report-climate-change-and-land.html
• WMO Greenhouse GasBulletin
https://public.wmo.int/en/resources/library/wmo-greenhouse-gas-bulletin

• WMO news release: Carbon dioxide levels continue at record levels, despite COVID-19 lockdown
https://public.wmo.int/en/media/press-release/carbon-dioxide-levels-continue-record-levels-despite-covid-19-lockdown

• Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf, by Natalia Shakhova, Igor Semiletov and Evgeny Chuvilin (2019)
https://www.mdpi.com/2076-3263/9/6/251

• Damage of Land Biosphere due to Intense Warming by 1000-Fold Rapid Increase in Atmospheric Methane: Estimation with a Climate–Carbon Cycle Model - by Atsushi Obata et al. (2012)  https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-11-00533.1

• Possible climate transitions from breakup of stratocumulus decks under greenhouse warming, by Tapio Schneider et al. (2019)
https://www.nature.com/articles/s41561-019-0310-1

• Solar geoengineering may not prevent strong warming from direct effects of CO2 on stratocumulus cloud cover - by Tapio Schneider et al.  https://www.pnas.org/content/early/2020/11/10/2003730117

• An earth system model shows self-sustained melting of permafrost even if all man-made GHG emissions stop in 2020 - by Jorgen Randers et al.
https://www.nature.com/articles/s41598-020-75481-z
• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html
• A Temperature Rise Of 18 Degrees Celsius https://arctic-news.blogspot.com/p/a-temperature-rise-of-18-degrees-celsius.html

• A rise of 18°C or 32.4°F by 2026? https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html
• Temperatures threaten to become unbearable https://arctic-news.blogspot.com/2020/09/temperatures-threaten-to-become-unbearable.html
• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

[Author: Sam Carana] [Category: climate action, emissions]

[*] [+] [-] [x] [A+] [a-]  
[l] at 12/22/20 7:54pm

 by Andrew Glikson

The definition of insanity is doing the same thing over and over and expecting different results. - Albert Einstein.


As the world is trying to hopefully recover from the tragic effects of COVID-19, it is reminded there is no vaccine for the existential threat for its life support systems posed by global warming, nor for the looming threats of future wars and nuclear wars fueled by warmongers and $trillion preparations by military-industrial complexes.

Between 1740 and 1897 some 230 wars and revolutions in Europe suggested war remained deeply ingrained in the human psyche and civilization. The question is whether the currently approaching catastrophes can be averted.

No one wishes to believe in the projections made in the recent book ‘The Uninhabitable Earth’, except that these projections, made by David Wallace-Wells, are disturbingly consistent with the current shift in state of the climate toward +4 degrees and even +6 degrees Celsius above pre-industrial levels, as indicated by the current trends (Figure 1) and conveyed by leading climate scientists and the International Panel for Climate Change (IPCC). 
Figure 1. .  Global mean temperature estimates for land areas (NASA).
Facing the unthinkable consequences of global warming is pushing climate scientists into a quandary. In private conversations, many scientists express far greater concern at the trend of global warming than they do in public. However, faced with social and psychological barriers, as well as threats of losing positions and jobs, in business, public service and academia, a majority keeps silent, displaying lesser courage than school children.
According to James Hansen (2012), NASA’s former chief climate scientist: “You can’t burn all of these fossil fuels without creating a different planet”. According to Joachim Schellnhuber (2015), Germany’s chief climate scientist: ‘We’re simply talking about the very life support system of this planet’, and ‘If we don’t solve the climate crisis, we can forget about the rest’.

Referring to a phenomenon he termed “scientific reticence”, James Hansen (2007) states: “I suggest that a “scientific reticence” (namely a reluctance to convey worrying news) is inhibiting the communication of a threat of a potentially large sea level rise”.

According to Bajaj (2019): “when it comes to climate change, the need for excessive caution and absolute certainty of the results is manifesting as silence from the mainstream science on the worst yet probable consequences and the worst-case scenarios that are looking increasingly likely”. A paradox emerges where scientists who experience scientific reticence are still accused of being alarmists.

This is because an evaluation of the probability of a risk needs to be related to the magnitude of the risk. For example, the inspection of the engines of a Jumbo Jet carrying 300 passengers need to be even more rigorous than that of a commuter van, or evaluation of the risk posed by a potential failure of a nuclear reactor even more critical than that of a conventional power plant, as is the absolute safety of a particle accelerator.

By analogy with the dictum Those who do not learn from history are doomed to repeat it projections of future climate trajectories need to take account of studies of the past behaviour of the atmosphere-ocean system. The pace of current global warming exceeds those of the last 2.6 million years by an order of magnitude, with calamitous consequences for biological systems.

As indicated by the basic laws of physics, the principles of climate science and empirical observations in nature, under an increase of greenhouse gas concentrations by about 50 percent , global warming is inevitable. While modeled future climate change trajectories may vary, depending whether observations are based on recent measurements, paleoclimate data or models, the consequences of such an increase are inevitably catastrophic. Whereas IPCC models portray linear warming trends to 2300, other models take account of the flow of ice melt water from Greenland and Antarctica into the oceans and thereby irregular warming (Glikson, 2019).

Given the warnings issued by leading climate scientists and the IPCC, while nations keep investing their dwindling $trillions in its military-industrial complexes in preparations for future war/s, our world is losing its last chance to save its planetary life support systems

Andrew Glikson

Dr Andrew Glikson
Earth and Paleo-climate scientist
ANU Climate Science Institute
ANU Planetary Science Institute
Canberra, Australia



Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442




[Author: Sam Carana] [Category: Andrew Glikson, scientific reticence]

As of 6/24/21 5:11am. Last new 6/20/21 6:35pm.

Next feed in category: Nature